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PREFACE 

 

Automatic controllers are used in modern production operations. Their 

application influences the quality indicators of the automated processes. That is why 

there are a lot of scientific researches, which are dedicated to the methods of 

development of optimal controllers and optimal tuning of classical controllers (for 

instance, PI-controllers). However, the development of technologies causes new 

problems of control, which are cannot be solved with the known scientific methods. 

Here we may state the following thesis „new problems should be solved with the new 

methods”. In the presented monograph authors have tried to develop new approaches 

in that specific area. 

In chapter 1 authors have focused their attention on the particle swarm 

optimization method. They analyzed the areas of its application and stated the main 

features of PSO utilization for different problems. Based on the PSO weakness, which 

is connected with the possibility of stacking into local minima, the authors have 

proposed to overcome it with a swarm reinitialization technique. Another positive 

modification of PSO algorithm was an increase of swarm diversity. Both modifications 

have been investigated in the chapter and they have shown promising results in terms 

of localization of global minimum of benchmark functions and efficiency of 

computation recourses using. 

The main goal of chapter 2 is connected with the development of the general 

methodology of PI-controllers optimization. Authors have stated the problem in a 

general form (including constraints), and reduced it to the problem of unconstrained 

optimization. In order to prove the efficiency of the developed approach, several 

transfer functions were used in the carried out calculations. They refer to the plants of 

second, third and forth orders, with delays, with zeros and poles, etc. Such a variety of 

transfer functions is caused by the desire to prove the generality of the methodology. 

ME-PSO and ME-D-PSO have been used for finding the solutions of the optimization 
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problems. Obtained results have been compared with those, which refer to common in 

engineering practice tuning methods. Optimal-based results are better almost for all of 

the quality indicators. 

Chapter 3 is the largest one. Here researchers have unwinded the previous 

methodology to the problem of neural controller training. All the carried out 

calculations refer to the training of artificial neural network in „reinforced” paradigm. 

The number of arguments, which should be calculated, is much bigger, than for PI-

controllers. However, obtained results support the statement, that optimal 

neurocontrollers may be used for quite complicated control problems (for example, 

with non-linear, unstable, multivariable plants etc.). In the chapter authors have proved, 

that neurocontroller training may be effectively provided with PSO-based approaches. 

The presented in the monograph insights may be used in the allied sciences. 

The practical usefulness of the research relates to the recommendations for 

tuning of P-, PI-, or PID-controllers, and neurocontrollers; development of efficient 

linear or non-linear controllers; solving of complicated scientific and applied problems 

in the area of technical sciences, etc. Their application provides increasing control 

quality of different automated processes. 

Most of the monograph’s content has been obtained in the frame of scientific 

research supported by the public grant of Ukraine „Development of high-efficient 

automatic controllers” (registration number 0119U100758). It was conducted by 

scholars of National University of Life and Environmental Sciences of Ukraine. 

The monograph is useful for specialists in the area of automation and optimal 

control, scientists, workers, and developers of the control systems, students, and 

graduate students of higher technical institutions. 
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CHAPTER 1. AGROTRONICS OF DEVELOPMENT OF NEW 

MODIFICATIONS OF PSO 

1.1 Engineering management of ME-PSO 

Bio-inspired optimization methods have great spread in many fields of the 

human activities [1]. The reasons are linked to their calculation advantages and 

implementation simplicity in different applications. One of the most powerful 

methods within such a class of methods is PSO [2]. The number of its’ applications is 

huge [2-6]. PSO and various modifications have been used for: learning and 

designing of artificial neural networks [2], calculations of various control problems 

[3, 4], signal processing [5], design [6], sentiment analysis [7], programming 

problems [8] etc. Almost in all of the referenced works were used modifications of 

the canonical PSO. 

Indeed, many optimization problems have complications (stochastic influences 

[9], non-linearity [10, 11], multidimensionality and multi-extremal features [12], 

multi-objectivity [8, 13, 14], necessity to find the global extremum, etc.) which cause 

attempts of deep modification of PSO. 

In this paper, we present a proposal, called „Multi-Epoch Particle Swarm 

Optimization” (ME-PSO). This method allows to improve significantly the 

exploration ability of a swarm and makes possible to use computation resources in a 

more effective manner. 

According to PSO, at the beginning of the search process every particle in the 

swarm has random position. Rather quickly PSO finds local optimum, after that 

better local optimum and so on and so forth. As the algorithm continues the 

successive local optimums slightly differs and the quantity of iterations, required to 

reach further local optimums, is extending. Hence, the swarm tends to stagnation and 
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efficiency of the PSO respectively reduces. This problem is known as a premature 

convergence. 

In order to overcome the premature convergence and improve PSO exploration 

ability many of its modifications have been proposed. Such modifications envisage 

various strategies: mutation [7], different topologies of the particles’ connections [15] 

and topology variation [16], alteration of a swarm population [17], changing 

parameters of a swarm [18], varying the initial position and velocity of a swarm [19], 

adding extra terms in velocity expression or modification of canonical velocity 

formula [20], using many swarms in co-evolution interaction [21], integration PSO 

with other optimization methods [22] etc. Note that presented classification is not 

completed. 

Some of the mentioned modifications have shown a good performance for test 

optimization problems. Nevertheless, there is a lack of the PSO modifications which 

allow to overcome the premature convergence in a simple manner. Here we mean the 

algorithms without high calculation complication, the algorithms which are similar in 

simplicity to the canonical PSO. Hence, the further studies in the area of PSO-based 

techniques should be continued. 

1.1.1 ME-PSO description 

In the PSO method, a swarm is a set of particles which move on the surface of 

a minimized function in order to find global minimum of the function. During its 

movement particles improve the found minima and exchange information with their 

neighbours. The position of the i-th particle is a set of its coordinates (xi1, xi2,…, xiD) 

in the search domain with dimensionality D. 

At the initial stage of the PSO algorithm, the particles’ positions are randomly 

initialized. Each particle also described by the velocity vector, which is usually zero-

vector for the initial iteration. During subsequent iterations, the components of the 

position and velocity vectors of a particle are updating according to the formulas: 
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where ijv~  and ijx~ – are the new j-th component of velocity and position vectors of

the i-th particle; pij – the best position, that has been found by the i-th particle on the 

previous iterations (personal best); gj – the best position, that has been found by the 

all swarm on the previous iterations (global best); w – the inertial coefficient; c1 and 

c2 – cognitive and social coefficients respectively; r1, r2 – random numbers that are 

generated on the interval [0, 1]. The inertial coefficient w determines the influence of 

the previous velocity of the particle to the ijv~ . The value of the cognitive coefficient

c1 characterizes the degree of individual particle behaviour, its „desire” to move 

towards personal best. The value of the social coefficient c2 reflects the degree of 

collective behaviour, the „desire” to move towards global best. 

For the very first iteration the initial positions of the particles are considered as 

the best. 

An iteration of PSO algorithm includes applying the formulas (1.1) and 

updating the of pij and gj values according to the rules: 
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where f – is a function to be minimized. 

PSO execution provides advantageous exploration of the minimized function. 

For simple functions PSO commonly finds global minimum. As for topologically 

complicated functions PSO algorithm finds bad local minimum. This disadvantage is 

caused by premature convergence of the algorithm. In the following we proposed 

simple modification of PSO which eliminates mentioned disadvantage. 

Proposed ME-PSO algorithm is based on the monitoring of the global optimum 

search performance (herein, for clarity sake, we will refer as minimum of a function). 

The main idea of the novel technique is the following: if the rate of the swarm global 

best reducing is low then all the swarm particles positions must be reinitialized in a 
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random way (the new epoch of the swarm commences). The global best of the swarm 

(in the new epoch) for the first iteration is the same as it was for the last iteration of 

the swarm in the previous epoch. 

Moving on the surface of a function a particle may trap in a minimum that 

would be better than the previous epoch global best. It should be noted that for some 

number of iterations (just after reinitialization of the swarm) the particles move 

without any improvement of the global best. Soon a particle may find the local 

minimum that is the better than the current global best. 

We should set a criterion of swarm stagnation. Such criterion may be global 

best reduction rate described by the following expression: 

,1

i

ii

GB

GBGB
R 
  (1.3) 

where GBi and GBi-1 – are global bests of a swarm for the i-th (current) and (i-1)-th 

(previous) iterations. Equation (1.3) shows how many the global best of a swarm 

reduces during an iteration. Thus, value of R must be calculated at the end of every 

iteration. If the global best reduction rate is low, then the swarm must be reinitialized. 

The condition of the swarm reinitialization is: 

,RAR        (1.4) 

where AR – is acceptable rate of the global best reduction (this value must be set by 

ME-PSO user). 

The value of the AR must be set in view of the recommendations: big value of 

AR causes frequent reinitialization of the swarm and, as a result, during many 

iterations particles move without improving of the global best; small value of AR 

leads to jamming of the particles in local minima and stagnation of the swarm (note, 

if the AR=0 ME-PSO reduces to canonical PSO). The issue of assigning AR value is 

still open for discussions and it is necessary to investigate it in the further studies. In 

the following we set AR=0.01. Such value of AR provides quite good balance 

between function exploration and reinitialization. Other criteria, which may be used 

for the swarm reinitialization, are presented in the Table 1. They should be checked at 
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the end of each iteration as well. In the article we use only (1.1) and (1.2) expressions 

as condition of the swarm reinitialization. Note, all or just only one of the described 

criteria (Table 1.1) may be used for this purpose. 

In order to provide the high search ability of particles we propose to eliminate 

their inertial feature. It requires to set inertia coefficient equal to zero w=0. It causes 

rapid movement of particles on a function surface and, as a result, the bigger area of 

the function domain may be explored. 

Table 1.1 Possible criteria which may be used as condition of a swarm 

reinitialaization 

Formula Description 

,),1(, QqGBGB qii  

where Q – is the number of the 

iterations which must be set 

before run of the algorithm. 

If the value of the global best has not been 

changed during Q iterations, it may mean 

that the particles had trapped in local 

minima and they cannot leave it. The 

number Q may be set as a fraction of the 

total number of iterations N. For instance, 

Q=N(0.01…0.10). 

,)90.0...99.0(
1

1

i

E

e

e
i GBLB

E




where E – is some quantity of 

particles which is lesser than the 

swarm population; LB – local 

bests of the particles. Subscript 

means the i-th iteration, 

superscript means a number of 

the particle. 

If the E particles are close to the best 

particle in a swarm that mean they have a 

little chance to find the minimum that 

would be better than the current global 

best. In order to avoid swarm stagnation 

about the global best it is necessary to 

reinitialize the swarm. The number E must 

be set as an integer, for example, 

E=SP(0.1…0.5), where SP – is the swarm 

population. 
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The novel ME-PSO technique can be clarified within support of following 

pseudocode: 

Set the parameters c1, c2, SP, stop criterion (number of iterations, cost function 

value, etc.) and AR; 

Initialize particles positions and velocities; 

Calculate global best; 

Do 

Update the particles positions and velocities; 

For each particle check the excess search domain condition; 

Calculate personal bests and global best; 

Calculate R; 

If R≤AR then 

Reinitialize particles positions and velocities; 

Until stop condition is met. 

During initialization and reinitialization, all the components of particles’ 

positions should be set as a random number in the search domain and all the 

components of a particles’ velocity should be set equal to zero. Described approach 

allows to use computation resources more efficiently. Further study makes possible to 

establish how ME-PSO copes with the different optimization problems. 

1.1.2 Numerical experiments 

In order to show advantages of the ME-PSO the numerical experiments have 

been performed. We choose ten benchmark functions: uni- and multimodal (Table 

1.2). All of the chosen functions have different topology features but each function 

has global minima which are equal to zero. 

In order to establish how benchmark functions dimensions (D) influences to 

ME-PSO performance, experiments were carried out for numbers of D: 10, 30, 50 

and 200 (for the last experimental series). As indicators of the algorithms efficiency 
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average and median values were used. Standard deviation SD indicates dispersion of 

the reached minima in relation to average values. All calculations were carried out for 

PSO, IA-PSO [16] and ME-PSO techniques. Comparison different approaches, which 

are implemented in the ME-PSO and IA-PSO algorithms, will give the information 

about the efficiency of overcoming the premature convergence. 

In all experiments the number of iterations N as a stop criterion was used. 

Table 1.2 Ten benchmark function for numerical experiment 

Benchmark 

function 
Formula 

Search 

domain 

1 2 3 

Spherical 



D

i

ixf

1

21 -20≤xi≤20 

Elliptical 







D

i

i
D

i

xf

1

21

1

6)10(2 -2≤ xi ≤2 

Schwefel №1  
 
















D

i

i

j

jxf

1

2

1

3 -10≤ xi ≤10 

Rosenbrock  




 
1

1

222
1 )1()(1004

D

i

iii xxxf -10≤ xi ≤10 

Rastrigin  



D

i

ii xxf

1

2 10)2cos(105  -5≤ xi ≤5 

Griewank 140006

1

5.0

1

21  







D

i

i

D

i

i ixxf  -100≤ xi ≤100 

Alpine 



D

i

iii xxxf

1

1.0)sin(7 -10≤ xi ≤10 

Schwefel №2 983.418)sin(8

1

5.01 




 




D

i

ii xxDf  -500≤ xi ≤500 
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Table 1.2 continuation 

1 2 3 

Ackley 

exD

xDf

D

i

i

D

i

i





























































20)2cos(exp

2,0exp209

1

1

5.0

1

21



-30≤ xi ≤30 

Weierstrass 

 

 





 







20

0

1

20

0

1

)3cos(5.0

))5.0(32cos(5.010

k

kk

D

i k

i
kk xDf





-0.5≤ xi ≤0.5 

In order to obtained proper statistical results each numerical experiment has 

run 100 times. In each run the particles’ positions were random. Parameters of the 

swarm were the same for all experiments (Table 1.3). 

Table 1.3 Swarm parameters for all numerical experiments 

Parameters of the swarm Value 

c1 1.19 

c2 1.19 

w 0.72 

swarm population 30 

connection topology full 

1.1.3 Results and discussion 

Results of the first series of experiments (N=250) allow to determine the 

algorithms’ performance at early stages of the exploration (Table 1.4). 
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In Table 1.4 and further tables the best values of average and median are in 

bold. 

Figures in Table 1.4 show that on early stage of exploration ME-PSO has 

reached not good minima values for almost all benchmark functions. The only one 

exception is the function f5. 

The best performance in this experimental series relates to IA-PSO technique. 

For D=10 it allows to find local minima which are very close (in topology sense) to 

the global minimum of the functions f1, f2, f3, f10. The worst results ME-PSO has 

shown for the functions: f4 and f8. It is caused by small number of iterations. 

Thus, there is a need to study how ME-PSO works with big number of N. It 

was the purpose of the second series of experiment in which N=5000 (Table 1.5). The 

calculations were carried out for the most difficult functions to minimize. 

Comparison of data in Table 1.4 and Table 1.5 supports the statement that an 

increasing of the iteration number N makes it possible to reduce the average and 

median values of reached minima. 

Moreover, for some cases ME-PSO has reached almost computer zero 

(function f5 with D=10). Almost all results that are related to ME-PSO are better than 

those that were obtained with PSO and IA-PSO techniques. 

The exceptions are functions f3, f4 and f8. IA-PSO finds good local minimum 

of the f3 (with D=50) quite rapid. However, complicated topology of function f4 

causes the premature convergence both PSO and IA-PSO, especially for D=50. In 

order to compare PSO, IA-PSO and ME-PSO performances the graphs have been 

built (Fig. 1.3 and Fig. 1.4). 

Vertical and horizontal axes of the following graphs are presented in 

logarithmic scale. The graphs on Fig. 1.4 (b, c, d) make it obvious that ME-PSO has 

no premature convergence: the algorithm execution provides reduction of the global 

best during all iterations. 
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a) f4 

 

b) f5 

Fig. 1.3 PSO, IA-PSO and ME-PSO performances during minimizing of the 

benchmark functions f4 and f5 (D=10) 



CHAPTER 1. AGROTRONICS OF DEVELOPMENT  

OF NEW MODIFICATIONS OF PSO 

21 

 

 

a) f4 

 

b) f5 
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c) f7 

 

d) f9 

Fig. 1.4 PSO, IA-PSO and ME-PSO performances during minimizing of the 

benchmark functions f4, f5, f7 and f9 (D=50) 
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This is the biggest difference between ME-PSO and algorithms PSO and IA-

PSO. Graphs on the Fig. 1.3 and Fig. 1.4 clearly show that PSO and IA-PSO 

converge rather quickly. In contrast, ME-PSO continues to minimize almost all 

benchmark functions during all iterations. 

In order to support that suggestion, the third series of experiment was 

performed. All the calculations were carried out with the f4 and f5 functions with 

D=50.  

We choose f4 because IA-PSO has better than ME-PSO performance for its 

minimization. In order to investigate the impact of iterations number N on the IA-

PSO and ME-PSO performances we set N=50000. 

The choice of f5 for third experimental series is caused by the fact of bad 

efficiency of ME-PSO for that function on the previous experimental series. All the 

figures were set to the Table 1.6. Obtained results show that advantages of ME-PSO 

(especially for complicated functions) are revealed at big number of iterations. The 

graphs on Fig. 1.5 show the bigger N the better ME-PSO performance. 

 

Table 1.6 Results of the third experimental series 

F
u
n

ct
io

n
s 

PSO IA-PSO ME-PSO 

Average Median SD Average Median SD Average Median SD 

f4 1,98E04 1,94E04 5,61E02 4,72E01 4,88E01 8,99E-01 3,62E01 3,79E01 2,02E00 

f5 3,44E02 3,43E02 6,66E01 2,44E02 2,51E02 5,301E01 3,34E-35 2,50E-36 8,32E-37 

 

The most difficult benchmark function for all algorithms is f8. None of them 

have found a good solution. At early stages of the exploration these algorithms find 

bad local minima of f8. Even reinitialization of a swarm does not solve the problem: 

all the particles in a new epoch swarm have a great tendency to move toward 

previous global best. They have no time for proper exploration of the f8. This ME-

PSO weakness (only for some of the complicated optimization problems) causes the 

necessity for further improving of the proposed algorithm. 
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One of the possible ways to solve that problem is varying parameter AR during 

optimization process. For instance, AR can be a function of the current global best or 

current iteration. That issue is the matter for further investigations. 

 

 

a) f4 

 

b) f5 

Fig. 1.5 PSO, IA-PSO and ME-PSO performances during minimizing of the 

benchmark functions f4 and f5 (D=50) 
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Some optimization algorithms fail when the dimension of the cost function is 

more than 100. That is why the fourth series of experiment was conducted under 

condition D=200. Two benchmark functions (f4 and f7) were chosen for that series. 

They have different features: the first one is unimodal and the second one is 

multimodal. For these high-dimensional problems we set N=50000. All the obtained 

figures are in Table 1.7. 

 

Table 1.7 Results of the fourth experimental series 

F
u
n
ct

io
n
s 

PSO IA-PSO ME-PSO 

Average Median SD Average Median SD Average Median SD 

f4 1.46E06 1.42E06 2.09E04 1.98E02 1.97E02 7.90E00 1.96E02 1.94E02 5.04E00 

f7 1.92E02 1.83E02 4.90E01 7.90E01 7.33E01 1.01E01 1.38E01 1.33E01 4.22E00 

 

Graphs which related to PSO, IA-PSO and ME-PSO performances for the 

high-dimensional optimization problems are shown on fig 1.6. 

Data in table 1.7 and graphs on fig. 1.6 clearly prove the superiority of ME-

PSO. Although for f4 the difference between IA-PSO and ME-PSO is slight. 

Fig. 1.6 (a) shows the convergence of all algorithms. It is an obstacle for 

further function minimization. 
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a) f4 

 

b) f7 

Fig. 1.6 PSO, IA-PSO and ME-PSO performances during minimizing of the 

benchmark functions f4 and f7 (D=200) 

 

In order to prevent it further improvement of ME-PSO should be carried out. 

The ultimate goal is to find a PSO modification which is invariant to problem 

dimensionality and has high exploration abilities. 

 

1.2 Engineering management of ME-D-PSO 

 

One of the most powerful methods for function minimization is known as PSO 

(particle swarm optimization) proposed by Kennedy and Eberhart [2]. Since then 

there were hundreds of modifications of the canonical PSO-algorithm. Some of them 

have quite good searching abilities and allow their applying for a wide range of the 

real-world problems [23]. One of such problems is optimal control, particularly 

tuning of PI or PID-controllers for: quadrotors [24], active magnetic bearing suspends 

[25], variable frequency brushless synchronous generator [26], bioreactors [27], 
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overhead crane [28], energy conversion system [29] and many others. Almost all of 

these works involve following criteria to minimize: Integral Absolute Error (IAE) 

[24], Integral of Time-Absolute Error multiplication (ITAE) [25], overshoot [26]; 

[28, 29], Integral Square Error (ISE) [27], rise time and settling time [28]; [29], 

steady-state error [28]. However, other ones were ignored: maximal control, Integral 

Square Control (ISC), Integral Time-Absolute Control (ITAC), etc. Researches in 

that area are continuing.  

The researches aim is to adjust the controller in such a manner, that the most 

important criteria reduced to a minimum (or, at least, decreased as much as possible) 

and constrains are met. Nevertheless, constrains are very infrequent in the optimal 

tuning problems statements. 

The efficiency of the problem solving depends on the features of the chosen 

optimization method (algorithm). For PSO-based class of algorithms, their features 

depend heavily on their parameters. Appropriate adjusting of the parameters provides 

good algorithm performance.  

Another way to improve the PSO-based class of algorithms – is enhancing with 

different mechanisms of particles’ search, swarm reinitialization, local minima 

avoiding, etc. Such approaches involve additional lines of an algorithm’s code and, 

sometimes, additional parameters. 

It is a quite difficult task to classify all of the known PSO-based techniques. 

We should mention the work [30] where were presented all the most important 

directions in PSO methods evolution. Since then, hundreds have been developed. 

One of the approaches to swarm searching abilities improving is to increase its 

diversity [31-34]. Base on the definition of the swarm population diversity given by 

Shi, Eberhart and Zhan [35-37]; authors of the work [31] divided it into three parts: 

position diversity, velocity diversity, and cognitive diversity. All of these definitions 

mean some norm value (for example, position diversity means the farness of particles 

positions from swarm’s average point). The analysis of these diversities is presented 

in the work [32] and it has been found that the method based on the current position 
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and the average of current velocities has the best performance. In the article [33] 

position diversity governs the switching between attractive and repulsive phases of 

the swarm in ARPSO method. In scientific work [34] has been briefly analyzed the 

PSO-base techniques with a diversity mechanism as well as presented a novel 

diversity enhanced mechanism, which is similar to the crossover operation of 

Differential Evolution [38]. It involves initializing of some trial particles and exploits 

greedy mechanism for their selection. Work [34] gives a different definition of 

diversity: with the intention of usefulness in quantifying swarm exploration and 

exploitation. Thus, diversity may be exploited in different manners. 

In contrast to mentioned investigations, in the current article diversity denote 

another feature: the variety of the particles’ movements. 

In the article 39 a reinitializing mechanism for the PSO-algorithm (ME-PSO) 

has been developed. The main idea was to run a new swarm after the previous one 

had shown a low rate of minimized function reducing. That mechanism prevents the 

algorithm from premature convergence and improves its chances to continue the 

searching activity. In the work [40] ME-PSO method has been used for optimization 

of PI-controllers tuning. 

However, many areas of the control issues, particularly in the automation, are 

needed powerful techniques for synthesis of the optimal closed-loop systems of 

control. That statement is especially important in the cases of different contractions 

being placed on the control function or phase coordinates. The problem to solve may 

be complicated with non-linearities of the contractions, isolation and/or farness of the 

admissible search domains, distortion of the cost function, etc. In the current article, 

the PSO-based technique is developed, that might overcome such difficulties. 

The article is arranged in the following manner: the describing of the canonical 

PSO-algorithm is given in the first part of the third section. The second one contains 

the explanation of the new modified PSO-based method. The fourth section provides 

a description of the numerical experiments and gives raw data for further analysis. 

The fifth one is dedicated to the estimation of the compared algorithms efficiency 
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based on the worked-out two criteria. The algorithm which has shown the best 

efficiency is used for optimal tuning of PI-controllers with constraints in the sixth 

section. That part of the article also includes analysis of the new PSO-based 

algorithm applying to the problem of constrained optimization of the PI-controller 

tuning. Some suggestions and conclusions complete the article. 

 

1.2.1 ME-D-PSO description 

 

First of all, we will describe ME-PSO algorithm. As was mentioned earlier the 

main idea of that method is monitoring the algorithm efficiency during its execution. 

If a swarm tends to stagnation, which means that it has trapped to the bad minimum 

and there is a low possibility to leave it in the further iterations, the efficiency of the 

algorithm is low. The criterion, which reflects the swarm’s stagnation has been 

presented (1.3)-(1.4). For the very first iteration, the global best of the new 

(reinitialized) swarm is it was for the previous swarm. 

Taking into consideration quite a positive effect of the reinitializing mechanism 

in ME-PSO method [39] we will equip the new PSO modification with it. 

In order to improve search ability of the new PSO modification, it was 

enhanced with the diversity mechanism. The term „diversity” means the different 

features of the particles, which provide a different manner of their movements. From 

iteration to iteration the movement patterns of the particles are changing. It, in turn, 

improves the chances of finding the good (or even global) minimum of the cost 

function. In the frame of the research, the diversity mechanism is provided with a 

permanent variation of the coefficients w, c1, and c2. We have used a stochastic 

technique for their changing. In particular coefficients w, c1, and c2 were 

pseudorandom numbers in some ranges: wmin and wmax – for w; c1min and c1max – for c1; 

c2min and c2max – for c2. From iteration to iteration coefficients w, c1, and c2 are 

changing. However, the more general case of the algorithm allows some slowing-

down in the coefficients w, c1, c2 changes: variations may occur not on each of the 
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iteration. Such a case was not investigated in the current research. It is the subject of 

further study. 

Thus, the reinitialization prevents the algorithm’s premature convergence, and 

diversity of the particles in the swarm provides good search ability. The algorithm 

which contains mentioned techniques was called ME-D-PSO. 

1.2.2 Numerical experiments 

In order to show the performance of the ME-D-PSO method, numerical 

experiments should be carried out. The standard approach for such a purpose is to 

determine the performance indicators of compared algorithms for a range of different 

benchmark cost functions. In the frame of the research, we have used a set the 

following benchmarks (Table 1.8). 

All the given benchmarks have the global minimum, which is equal to zero. 

The benchmark functions have different topological features. Such a variety of 

benchmarks is dictated by the requirement to obtain to the extent possible general 

results. Indeed, the algorithm, which has shown good performance on the set of the 

benchmarks (Table 1.8), potentially will allow finding the global (or, at least, good 

local) minimum of a complicated real-world optimization problem. 

One of the most important features of the benchmark is its dimensionality. It 

influences the complication (in terms of optimization problem) of the cost functions. 

The high dimensionality of a cost function is almost always connected with its strong 

complexity.  

For multimodal functions increasing dimensions almost always leads to 

appearing of additional local minima. That is why we have used a quite big number 

of dimensions for all benchmarks D=50.  

The swarm population P for all algorithms is equal to 50. The number of 

iterations J is equal to 1000 for each algorithm’s run. 
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In order to obtain statistically-valid results for each benchmark function, all the 

algorithms have been run 50 times.  

In each run the particles’ positions were random. 

The comparable algorithms were: LDW-PSO [41], IA-PSO [18], Ring-PSO 

[42], ME-PSO [39], ME-D-PSO. Their parameters are given in Table 1.9. 

Table 1.9 Parameters of PSO-based algorithms 

Parameters of 

the swarm 

Algorithm 

LDW-PSO IA-PSO Ring-PSO ME-PSO ME-D-PSO 

c1 1.19 1.19 1.19 0.10 var 

c2 1.19 1.19 1.19 2.10 var 

w var var 0.72 0 var 

connection 

topology 
full full non-full full full 

The notations „var” for different algorithms given in Table 1.9 are explained 

below:  

1) for LDW-PSO weight coefficient according to the work [41] is described as

follows:

,)( minmaxmin w
J

jJ
www 


     (1.5) 

where wmin and wmax – minimum and maximum limits of the weight coefficient 

domain (wmin=0.4, wmax=0.9); 

2) for IA-PSO weight coefficients are different for different particles. They are

changing during algorithm execution [18] with accordance to the following

formula:

),,1(,
)x(max

x
1)1,5.0( Pp

g

g
randw

jрj
р

jрj
р 




















  (1.6) 
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where wp – the weight coefficient of the p-th particle; P – swarm population; 

gj – global best, which has been found during 1...j iterations; xjp – the position 

vector of the p-th particle on the j-th iteration; 

3) for ME-D-PSO the variation of the coefficients w, c1, and c2 has been explained 

in the following subsection. Now we set the domain limits: c1min=c2min=wmin=0; 

c1max=c2max=2, wmax=1. 

The obtained results have been estimated with the set of statistical indicators: 

maximum (the worst), minimum (the best), average, median, and standard deviation 

(SD) values. 

All the figures which illustrate the obtained results are given in Table 1.10 (the 

best figures are in bold). 

 

Table 1.10 Numerical experiments outcome 

Functions Indicators 
Algorithms 

LDW-PSO IA-PSO Ring-PSO ME-PSO ME-D-PSO 

1 2 3 4 5 6 7 

f1 

Max 1.979E+00 7.943E-26 5.807E-07 1.293E-06 4.785E+03 

Min 4.258E-02 9.352E-30 9.815E-08 3.497E-08 1.092E-11 

Average 5.184E-01 8.519E-27 2.664E-07 1.903E-07 9.569E+01 

Median 3.643E-01 3.360E-27 2.584E-07 1.379E-07 1.581E-09 

SD 4.395E-01 1.402E-26 1.063E-07 2.023E-07 6.766E+02 

f2 

Max 1.236E+03 5.090E+01 1.855E+02 7.023E+06 6.230E+06 

Min 1.146E+02 4.606E+01 3.924E+01 4.362E+04 4.259E+01 

Average 3.282E+02 4.807E+01 8.676E+01 8.135E+05 2.372E+05 

Median 2.650E+02 4.843E+01 8.600E+01 1.583E+02 1.534E+02 

SD 2.244E+02 9.105E-01 4.217E+01 2.058E+06 1.175E+06 

f3 

Max 2.736E+02 2.802E+02 1.897E+02 8.273E+02 7.304E+02 

Min 1.221E+02 1.048E+02 1.010E+02 2.405E+02 7.578E+01 

Average 2.030E+02 1.807E+02 1.467E+02 4.072E+02 1.603E+02 

Median 2.054E+02 1.767E+02 1.485E+02 3.537E+02 1.356E+02 

SD 3.739E+01 3.506E+01 2.462E+01 1.642E+02 1.214E+02 
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Table 1.10 continuation 

1 2 3 4 5 6 7 

f4 

Max 1.005E+00 3.487E-02 1.232E-02 3.428E+01 3.801E-02 

Min 3.269E-02 1.324E-32 9.401E-08 9.931E-09 1.739E-10 

Average 2.514E-01 8.503E-03 5.720E-04 1.908E+00 6.988E-03 

Median 1.926E-01 2.935E-30 7.021E-07 3.705E-03 5.886E-08 

SD 1.954E-01 1.322E-02 2.242E-03 7.612E+00 1.016E-02 

f5 

Max 4.360E+04 2.878E+01 6.904E+00 1.169E+02 4.475E+00 

Min 3.951E-01 9.716E+00 1.803E-02 4.242E-03 6.589E-04 

Average 3.889E+00 2.014E+01 1.943E+00 5.823E+00 9.738E-02 

Median 2.671E+00 2.031E+01 1.387E+00 1.634E-01 6.896E-03 

SD 2.933E+00 4.579E+00 1.883E+00 1.661E+01 6.317E-01 

f6 

Max 1.470E+02 3.325E+02 1.866E+02 3.674E+02 3.691E+02 

Min 7.023E+01 2.681E+02 1.282E+02 1.047E+02 4.565E+01 

Average 1.144E+02 2.989E+02 1.567E+02 1.608E+02 9.095E+01 

Median 1.153E+02 2.987E+02 1.562E+02 1.380E+02 8.040E+01 

SD 1.800E+01 1.627E+01 1.476E+01 7.422E+01 5.905E+01 

f7 

Max 6.681E+00 4.112E+00 1.155E+00 2.081E+01 1.185E+00 

Min 2.971E+00 3.908E-14 3.658E-04 2.730E+00 2.156E-04 

Average 4.589E+00 3.283E+00 6.239E-02 1.805E+01 6.637E-02 

Median 4.658E+00 3.559E+00 1.050E-03 1.861E+01 4.394E-03 

SD 9.127E-01 1.049E+00 2.461E-01 3.056E+00 2.336E-01 

f8 

Max 7.181E-01 6.631E-16 1.299E-02 1.751E+00 1.656E+00 

Min 3.508E-01 6.075E-16 1.078E-03 6.473E-01 4.143E-02 

Average 4.840E-01 6.572E-16 2.609E-03 8.916E-01 2.269E-01 

Median 4.634E-01 6.630E-16 2.025E-03 8.664E-01 1.875E-01 

SD 9.396E-02 1.684E-17 2.242E-03 2.047E-01 2.195E-01 

f9 

Max 1.417E+01 2.501E-23 2.714E-04 2.124E+02 2.070E+02 

Min 1.190E+00 2.044E-26 1.188E-04 7.489E-05 2.718E-05 

Average 6.873E+00 3.180E-24 1.744E-04 2.972E+01 4.552E+00 

Median 5.710E+00 1.248E-24 1.657E-04 1.006E+01 1.912E-04 

SD 4.177E+00 4.923E-24 3.345E-05 5.829E+01 2.929E+01 
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Table 1.10 continuation 

1 2 3 4 5 6 7 

f10 

Max 1.219E+06 5.444E+03 9.795E+01 4.139E+11 3.917E+11 

Min 7.318E+02 1.786E+03 7.999E-01 6.117E-03 1.356E-05 

Average 5.336E+04 3.159E+03 2.309E+01 8.277E+09 7.835E+09 

Median 1.004E+04 2.832E+03 1.430E+01 3.397E-02 5.360E-04 

SD 1.791E+05 9.887E+02 2.336E+01 5.853E+10 5.540E+10 

f11 

Max 4.200E+00 8.999E-01 1.500E+00 1.900E+00 3.445E+01 

Min 1.400E+00 5.999E-01 8.999E-01 9.999E-01 7.999E-01 

Average 2.782E+00 7.639E-01 1.133E+00 1.384E+00 1.661E+00 

Median 2.700E+00 7.999E-01 1.100E+00 1.300E+00 9.999E-01 

SD 5.759E-01 6.312E-02 1.342E-01 2.198E-01 4.733E+00 

f12 

Max 1.456E-19 5.866E-11 1.108E-18 2.908E-04 2.668E-05 

Min 4.471E-20 1.163E-16 3.265E-20 3.270E-20 2.428E-20 

Average 8.429E-20 2.695E-12 1.236E-19 1.341E-05 5.335E-07 

Median 7.399E-20 4.806E-14 7.170E-20 4.011E-20 3.494E-20 

SD 2.652E-20 9.472E-12 1.854E-19 5.516E-05 3.773E-06 

 

The most valuable statistical indicator in the list is a median. It is the least 

subjected by the influence of the random character of the algorithms’ performance. 

Thus, for each of the compared algorithms, we have counted the total number of the 

cases then it is the best (in terms of median value): LDW-PSO – 0, IA-PSO – 6, 

Ring-PSO – 1, ME-PSO – 0, ME-D-PSO – 5. Such preliminary analysis shows the 

advantages of IA-PSO and ME-D-PSO algorithms. However, in order to establish the 

most powerful algorithm, we should carry out a deeper analysis. 
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1.3 Engineering management of algorithms performance analysis 

 

1.3.1 Development of estimation criteria 

 

In order to establish the algorithms’ efficiency, the numbers given in Table 

1.10 should be properly analyzed. We will conduct the analysis with two indicators 

which are based on the reached median values of the cost functions. 

The first estimation criterion – is the ranks’ sum of an algorithm. In order to 

calculate that indicator for each of the cost function, all the algorithms have been 

ranked by median values. Then we added all the algorithms ranks and obtained for 

each of the algorithm the numerical values of the first estimation criterion. 

The drawback of such an estimation approach is in the fact that all the criterion 

values are „unweighted”. They do not reflect the numerical values of the median. In 

order to overcome that disadvantage following criterion has been proposed: 
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where fzj=1 − the median value of the z-th algorithm (for its fifty runs), which is 

related to the first algorithm’s iteration (the first iteration of all algorithms is the 

same – it is calculation of a cost function for randomly initialized arguments); fzj=J − 

the median value of the z-th algorithm, which is related to the J-th (the last) iteration 

of the algorithm. Criterion (1.7) shows the algorithm’s performance with relation to 

the best one (of course, for particular cost function). For the best algorithm (in terms 

of the smallest median values of the particular cost function) LogCr equals to one. 

Proposed criterion (1.7) should be applied for each of the benchmarks. 
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1.3.2 Estimation of the compared algorithms 

 

All the calculated values of the estimation criteria are given in Table 1.11 and 

Table 1.12. 

 

Table 1.11 The first estimation criterion (algorithms’ ranks sum) 

Functions 
Algorithms’ ranks 

LDW-PSO IA-PSO Ring-PSO ME-PSO ME-D-PSO 

f1 1 5 2 3 4 

f2 1 5 4 2 3 

f3 2 3 4 1 5 

f4 1 5 3 2 4 

f5 2 1 3 4 5 

f6 4 1 2 3 5 

f7 2 3 5 1 4 

f8 2 5 4 1 3 

f9 2 5 4 1 3 

f10 1 2 3 4 5 

f11 2 5 3 1 4 

f12 2 1 3 4 5 

Criterion value 22 41 40 27 50 

 

Overall estimation of the algorithm’s performance for the first criterion shows 

that ME-D-PSO is the best one. The worst algorithm among estimated is LDW-PSO. 

The calculated values of the second criterion are given in Table 1.12. 

Based on the LogCr criterion we may argue that ME-D-PSO is the best 

algorithm. However, IA-PSO is characterized by a similar performance. 

 

 



CHAPTER 1. AGROTRONICS OF DEVELOPMENT  

OF NEW MODIFICATIONS OF PSO 

39 

Table 1.12 The second estimation criterion (LogCr values) 

Functions 
Algorithms 

LDW-PSO IA-PSO Ring-PSO ME-PSO ME-D-PSO 

f1 0.141 1.000 0.344 0.353 0.417 

f2 0.861 1.000 0.953 0.903 0.906 

f3 0.782 0.861 0.952 0.498 1.000 

f4 0.075 1.000 0.250 0.130 0.284 

f5 0.403 0.200 0.469 0.683 1.000 

f6 0.781 0.204 0.597 0.672 1.000 

f7 0.152 0.180 1.000 0.013 0.856 

f8 0.041 1.000 0.193 0.023 0.066 

f9 0.062 1.000 0.235 0.053 0.233 

f10 0.517 0.554 0.706 0.880 1.000 

f11 0.692 1.000 0.919 0.877 0.944 

f12 0.983 0.686 0.984 0.997 1.000 

The sum of LogCr 

criterion values 
5.493 8.685 7.602 6.083 8.705 

 

Based on two criteria we have identified the best algorithm. It is ME-D-PSO. 

Thus, such a simple enhancing of ME-PSO algorithm leads to significant 

improvement in its efficiency [43]. 

 

Conclusions to сhapter 1 

 

1. In the research we proposed the novel PSO-based technique (ME-PSO). The 

basic idea of it is in reinitialization of the stagnant swarm. The article contains 

the description of the stagnation criteria and one of them has been used in the 

presented above calculations. The used in calculations criterion appeals to the 
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rate of global best reduction. If it is low then a swarm should be reinitialized 

(the new epoch of swarm is commencing). 

2. The value of AR (acceptable rate) is a matter for further studies. It is necessary 

to found the connections between AR and parameters of optimization problem: 

its dimensionality, search domain, a function topology, etc. 

3. The main advantage of the ME-PSO is the following: the greater the number of 

iterations the better the value of a reached extremum of a function. Proposed 

ME-PSO algorithm may be combined with other PSO modifications. The 

reasonable combinations of ME-PSO and other PSO-based techniques, impact 

of parameters on the algorithm performance are the issues for further studies. 

4. Starting from PSO-algorithm with reinitialization of the swarm (ME-PSO) we 

enhanced it with diversity mechanism. In order to measure the algorithm 

performance, two criteria have been proposed. Their values clearly showed the 

superiority of the new algorithm ME-D-PSO over other ones under comparison 

(for example, ME-D-PSO algorithm has the 8.705 estimation of the sum of 

LogCr criterion values – the best one among others; the same refers to the 

algorithms’ ranks). In the calculations, we have used ten well-known 

benchmark functions. Such criteria may be exploited in the optimization 

methods comparison. 
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CHAPTER 2. AGROTRONICS OF GENERAL APPROACH  

TO PI-CONTROLLERS TUNING OPTIMIZATION 

 

2.1 Engineering management of сonstrained optimization of the PI-

controller tuning 

 

2.1.1 The general statement of the optimization problem 

 

In this section, we have investigated PI-controllers, as they have the most 

common usage in many areas of automated processes. The problem of constrained 

optimal PI-controller tuning includes the following elements: a set of criteria to 

minimize, set of constraints, and the stability requirement. Let us assume that the 

mathematical model of the controlled system is known (it is a differential equation). 

The general setting of the optimization of a PI-controller tuning problem may be 

presented in the following form: 
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 (2.1) 

where Cri – i-th criterion to minimize (in the frame of the current research we accept 

that all the criteria reflect various undesirable features of the plant); I – total number 

of criteria to minimize; x – plant variable; u – control function (in the following we 
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will denote it as „control”); Kp and Ti – proportional and integral coefficients of PI-

controller respectively; K – the order of the plant (the order of polynomial 

denominator of the plant transfer function); Q – the order of polynomial numerator of 

the plant transfer function; Ak and Bq – the k-th and the q-th coefficients which 

depend on the parameters of the plant; fe – e-th function, which in the general case 

depends on the plant variable x, and its higher derivatives with time, control u and its 

higher derivatives with time, as well as the coefficients Ak and Bq; Fe – the limit value 

of the e-th function; E – total number of inequalities; t – time; τ – time delay; r – set-

point. The solution of the problem (2.1) is such values of the coefficients Kp and Ti, 

which require all the conditions (2.1). It should be pointed out, that it is desirable to 

find a pareto-optimal solution of the problem (2.1). 

Note, in the sense of computational complexity problem (2.1) is quite difficult, 

especially for quite big numbers K and E. That is why optimization algorithm 

performance is crucial. In the process of an algorithm applying, on each of the 

iteration inequality (2.1) should be checked. This complicates the operation of the 

algorithm. Therefore, there is a need to reduce the initial problem (2.1) to a single 

complex criterion. 

 

2.1.2 Reducing the initial problem to the unconstrained optimization 

(development of the generalized optimization criterion) 

 

The crucial requirement to the PI-controller tuning – is the stability of the 

plant, which mathematically presented with the fourth line of the system (2.1). These 

expressions may be substituted with a single terminal criterion – the norm of the error 

and its higher derivatives with time. However, commonly accepted, that the plant is 

stable if the variable x has achieved a range (0.9…1.05)r and the higher derivatives of 

the variable x with time are minor. That is why we may substitute the stability 

requirements with the following terminal criterion: 
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where T – the moment when the stability conditions are met; svk – a small admissible 

value of k-th derivative of x with time; δT – termination coefficient, which reflect the 

importance of achieving of stability conditions. The absolute minimum of criteria 

(2.2) is equal to zero. When it is achieved, stability requirements are met. 

The problem of reducing the set of criteria Cri to the single one (complex 

criterion) may be solved in the following manner: 
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where wi – is the i-th weighting coefficient, that reflects the importance of the 

criterion Cri; mi - i-th coefficient, which reduces the product miCri into dimensionless 

value. The set of the inequalities (the second line of the system (2.1)) might be 

substituted with the following criterion: 
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(2.4) 

where y – index of violated inequality in the requirements (2.1); Y – total number of 

the violated inequalities; δp – penalty coefficient. 
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Now, we may develop the generalized complex optimization criterion. Before 

we present its expression one note should be done.  

Each of the criteria (2.2)-(2.4) has a different importance. In order to take that 

into account, the generalized complex optimization criterion should have proper 

topology features. We proposed it like pit-in-pit topology: 

min, CCCrTerCr ineq     (2.5) 

The top pit reflects the topology of criterion (2.2), the under pit responds to the 

criterion (2.4), and, finally, the bottom one has the criterion (2.3) topology. Nesting 

of the pits is provided with coefficients δT and δp, they must be set in the following 

manner δT>>δp>0. Criterion (2.5) may be calculated as the mathematical model of the 

plant is known and the coefficients Kp and Ti are set. In the frame of the investigation, 

we consider the cost function as some MISO-function. Its inputs are coefficients Kp 

and Ti, the body of the MISO-function is a numerical integration of the differential 

equation of the plant, and the output is the calculated criterion (2.5). Now, we may 

illustrate the efficiency of the proposed approach for different plants, which are 

described with the last line of the system (2.1). 

 

2.2 Engineering management of ME-D-PSO application 

 

2.2.1 Conditions of the numerical experiments 

 

In order to prove the superiority of the developed tuning technique, we state 

four problems to solve. All the calculations were performed for the well-known 

transfer functions given in Table 2.1. They were proposed by K.J. Åström and T. 

Hägglund in the work [1]. 

In 2.1 subsection we have used the differential equation. 

However, in Table 2.1 we gave the transfer functions as they are common in 

the automatic control theory. There are no contradictions; one may obtain transfer 

function as soon as the differential equation is known, and vice versa. 
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Table 2.1 Transfer functions for constrained optimization of PI-controller tuning 

Transfer function 

Search 

domain Note 

Kp Ti 

1 2 3 4 
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improvements 

when going from 

PI to PID control 

 

The inequalities for all of the considered cases are presented below: 


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u

rх
     (2.6) 

The first inequality (2.6) requires zero overshoot, the second one allows avoiding the 

saturation element in the output of the PI-controller.  

For all experiments r=1, svk=0.005. 

In the investigation the following complex criterion has been used:  
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where ts – settling time. Numerical coefficients near the summands are the product of 

weighting coefficients and the coefficients for reducing the values of summands to 

dimensionless value. Finally, the values of coefficients δT and δp are 106 and 103 

respectively. 

In order to detect the tuning efficiency the following quality indicators have 

been used: mean integral error 


st

s edtt

0

1
 (MIE), mean integral control 
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st

s udtt

0

1
 

(MIC), and settling time ts. In the carried out calculations, we used the following ME-

D-PSO parameters: J=50, S=20, AR=0.001. 

 

2.2.2 Obtained data analysis 

 

All the obtained data are given in Table 2.2. In order to illustrate the reaching 

of the set-point r, we have built plots (Fig. 2.1). 

 

Table 2.2 Obtained PI-controller coefficients and quality indicators 

Transfer function 
Coefficients values Quality indicators 

Kp Ti MIE MIC ts 
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It is obvious, that for all the numerical experiments overshoot is equal to zero 

and control is within the set limit 1.5. Both numerical values of the quality indicators 

given in Table 2.2 and plots in Fig. 2.1 confirm the high efficiency of optimal PI-

controller tuning. 

 

 

a) 

 

b) 
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c) 

 

d) 

Fig. 2.1 Control u (gray curve) and controlled variable x (black curve) for transfer 

functions: a) G1(s); b) G2(s); c) G3(s); d) G4(s) 

 

In order to illustrate the decreasing of value Cr during the algorithm’s 

execution, we have built plots in the logarithmic scale (Fig. 2.2). 
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a) 

 

b) 

Fig. 2.2 Decreasing of Cr value during algorithm execution for transfer 

functions: a) G1(s); b) G2(s) 
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In Fig. 2.2, a one may observe the pit-in-pit topology of criterion Cr. Indeed, 

the first and the second iterations of ME-D-PSO took place on the top pit. In the 

following two iterations, the global best of the swarm was in the middle pit. The rest 

of the iterations occurred in the bottom pit where the value of criterion (2.7) was 

decreasing. It may happen that from the very first iteration algorithm finds a stable 

solution of the problem and the global best of the swarm is located in the middle pit 

(Fig. 2.2, b). After three executed iteration algorithm fell into the bottom pit.  

Dot plots in Fig. 2.2 confirm the high efficiency of the developed criterion 

(2.5) as well as the approach to find its minimum (ME-D-PSO). Thus, we may 

propose to exploit it for more general problems of optimal control [2]. 

 

2.3 Engineering management of ME-PSO application 

 

2.3.1 Conditions of numerical experiments 

 

In order to prove the efficiency of the ME-PSO application, we have stated five 

problems of tuning PI-controllers for different real-world plants. In Table 2.3 we 

have shown their transfer functions, as well as the search domains for coefficients P 

and I of PI-controllers. 

 

Table 2.3 Transfer functions of real-world plants and PI-controller coefficients search 

domains 

Transfer function 
Search domains 
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Used in calculations transfer functions refer to the following plants: G1(s) – to 

the fruit storage; G2(s) – to the grain dryer; G3(s) – to the greenhouse; G4(s) – to the 

heating boiler КВГМ-100, and G5(s) – to the mobile robot, that is used in a 

greenhouse [3]. For the transfer functions G1(s)-G4(s) the control channel is „input 

power ‒ temperature”, for the transfer function G5(s) it refers to „power supply 

voltage ‒ the angular speed of robot drive”. Such variety of plants is caused by desire 

to evidentiate the generality of the methodology. 

Tuning of PI-controllers for five plants should require a condition of zero 

overshoot. For all of the numerical experiments following parameters have been set: 

δT=108, δp=106, r=1; Δ=0.005r, sn=0.001. 

In order to find values Kp and Ti, ME-PSO [4] method was applied. Note, that 

in work [5] it has been used for similar problems, but there were no constraints. 

Parameters of method ME-PSO have a dramatic impact on its performance. That is 

why we have listed them in Table 2.4. 

 

Table 2.4 Parameters of ME-PSO algorithm 

Parameters Value 

Social coefficient c1 1.19 

Cognitive coefficient c2 1.19 

Swarm population 25 

Acceptable rate AR 0.05 

Particles connection topology full 

Number of iterations 50 
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Optimization criterion for all the cases is described as follows: 

.6.03.05.0

0

1

0

1
s

t

s

t

sс tеdttudttС
ss

 
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   (2.8) 

Coefficients of quality indicators in (2.8) are given in the numerical form: they 

reduce their dimensions to dimensionless form and refer to the importance of each of 

them. In the carried out calculations, apart from the optimal methodology, we have 

used rules of well-known in engineering practice methods: Ziegler-Nichols [6], 

Kappa-Tau [7], AMIGO [8], Chien-Hrones-Reswick [9], Tyreus-Luyben [10]. For 

transfer functions G1(s), G2(s), G3(s) and G5(s) were used Ziegler-Nichols, Kappa-

Tau, AMIGO and Chien-Hrones-Reswick [9] methods. For the transfer function 

G4(s) Chien-Hrones-Reswick method was substituted to Tyreus-Luyben one by virtue 

of the fact, that the former method leads to unstable control. 

The proof of the superiority of the approach is based on the comparison of 

quality indicators, which refer to the tuning methods mentioned above. Quality 

indicators, used in the frame of the research, are: mean integral error 


st

s edtt

0

1

 (MIE), 

mean integral control 


st

s udtt

0

1

 (MIC), settling time ts, and overshoot (OS). 

 

2.3.2 A brief analysis of tuned PI-controllers performance 

 

The results of the calculations are presented in Table 2.5 below. The best 

values of the indicators are in bold. 

Table 2.5 Results of numerical experiments 

Tuning method 

Tuned 

coefficients MIE MIC ts, s OS, % 

Kp Ti 

1 2 3 4 5 6 7 
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Table 2.5 continuation 

1 2 3 4 5 6 7 

Transfer function G1(s) 

Ziegler-Nichols 56.571 0.295 0.15 8.22 49.8 15.2 

Kappa-Tau 17.198 2.238 0.16 3.83 133.0 15.2 

AMIGO 20.849 2.527 0.13 3.61 145.7 10.4 

Chien-Hrones-Reswick 37.714 0.530 0.17 6.48 65.1 16.7 

Optimal tuning 70.720 3.181 0.26 19.95 17.0 0.0 

Transfer function G2(s) 

Ziegler-Nichols 5.446 23.319 0.20 1.36 493 40.9 

Kappa-Tau 1.439 139.220 0.22 0.81 809 15.2 

AMIGO 1.740 140.617 0.20 0.82 777 11.1 

Chien-Hrones-Reswick 3.631 41.975 0.31 1.24 355 30.2 

Optimal tuning 2.234 209.674 0.42 1.32 255 0.0 

Transfer function G3(s) 

Ziegler-Nichols 5.446 23.319 0.23 40.32 8605 26.1 

Kappa-Tau 1.439 139.22 0.32 29.33 16640 0.0 

AMIGO 1.740 140.617 0.31 29.44 17060 0.0 

Chien-Hrones-Reswick 3.631 41.975 0.28 37.43 7980 11.4 

Optimal tuning 85.688 15.668 0.44 63.64 1265 0.0 

Transfer function G4(s) 

Ziegler-Nichols 0.988 646.696 0.24 0.24 2440 55.9 

Kappa-Tau 0.429 3551.73 0.21 0.08 3822 25.7 

AMIGO 0.384 6684.990 0.15 0.04 6035 17.0 

Tyreus-Luyben 1.675 688.077 0.18 0.30 2586 56.0 

Optimal tuning 0.327 4.683·107 0.36 0.12 1683 0.0 

Transfer function G5(s) 

Ziegler-Nichols 0.387 0.118 0.26 0.11 0.178 57.6 

Kappa-Tau 0.110 0.798 0.23 0.04 0.300 21.0 
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Table 2.5 continuation 

1 2 3 4 5 6 7 

AMIGO 0.133 0.837 0.19 0.04 0.314 15.8 

Chien-Hrones-Reswick 0.258 0.212 0.28 0.08 0.168 43.1 

Optimal tuning 0.122 2.311 0.39 0.07 0.126 0.0 

 

In order to illustrate the control dynamics and confirm numbers in Table 2.5 we 

have built plots (Fig. 2.3). 

Indeed, all the plots show zero overshoot performance refers to optimal tuned 

PI-controllers. Another strong tendency is the shortest transitional mode: settling time 

indicator for optimal tuned PI-controllers is the smallest. 

 

 

a) 
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b) 

 

c) 
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d) 

 

e) 

Fig. 2.3 Step response of the real-world plants with transfer functions:  

a) G1(s); b) G2(s); c) G3(s); d) G4(s); e) G5(s) 
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For the plant described with transfer function G1(s) ts is 2.93…8.57 times 

shorter, than for the rest of tuning methods; for the plant with transfer function G2(s) 

ts ‒ is 1.39…3.17 times shorter; for the plant with transfer function G3(s) ts ‒ is 

6.31…13.48 times shorter; for the plant with transfer function G4(s) ts ‒ is 1.45…3.56 

times shorter; for the plant with transfer function G5(s) ts ‒ is 1.33…2.49 times 

shorter. 

Such a reduction in duration of transitional modes has a negative effect: other 

indicators (MIC and MIE) for all of the plants, which refer to the optimal tuned PI-

controller, are bigger on the whole. 

We may point the cause: the duration of the transitional modes is bigger than 

indicators MIC and MIE. Thus, their impact on Cr value is weak. In order to reduce 

them one should magnify their coefficients. One expects that the duration, in this 

case, will increase. 

Summing up what has been investigated, we may state, that whatever solution 

has been found, it is Pareto-optimal one. It shifts the research focus on the importance 

of the quality indicators. 

 

2.3.3 A brief analysis of computational efficiency of ME-PSO algorithm 

 

In this subsection, the computational characteristics will be shown. The 

importance of this issue is grounded by the natural worries: whether ME-PSO 

provides the global minimum of the generalized criterion, or it is a local one. Such a 

question is natural, because of the strong desire to obtain as much advantage as 

possible (in sense of criterion value). 

In order to investigate the issue the plots of the algorithm’s convergence were 

built (Fig. 2.4). Plots on Fig. 2.4 (b) (c) clearly show that great decrease of Cr value 

occurred during first algorithm iterations. As for the first optimization problem 

(tuning the plant with transfer function G1(s)), initialization of the swarm was quite 

advantageous: one of the particles was initialized near to the global minimum of the 
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criterion Cr and further iterations of the algorithm did not lead to the great 

improvement of the very first solution. 

 

 

a) 

 

b) 
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c) 

Fig. 2.4 Convergence of ME-PSO algorithm for transfer functions:  

a) G1(s); b) G3(s); c) G5(s) 

 

During algorithm’s execution, the swarm was few times reinitialized. One may 

observe such an effect on the plots by edges of the Cr value decreasing. For instance, 

in Fig. 2.4 (c) edges are observed on 9-th, 14-th and 21-th iterations. They prevent the 

algorithm from premature convergence and enhance the probability of finding the 

criterion’s global minimum. Thus, we have quite a strong prerequisite for a statement, 

that the found solutions are global minimums of the generalized criterion [11]. 

 

Conclusions to сhapter 2 

 

1. The second chapter of the monograph is devoted to the development of an 

approach to the constrained optimization of PI-controller tuning. In order to use 

ME-D-PSO for that aim, we reduced the initial problem to the unconstrained 

optimization problem. It is based on the criterion with pit-in-pit topology. In 

the researched case, we have used the three-leveled pit. However, the more 
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general case may include more levels (for instance, when the inequalities 

or/and optimization criteria are unequal with influence). 

2. Having the powerful method for functions minimization (ME-D-PSO) and 

developed criterion we have carried out the calculation of PI-controller 

coefficients for four benchmark transfer functions. Analysis of the received 

data confirms the high efficiency of the proposed approach. 

3. The efficiency of ME-PSO application was tested via tuning of PI-controllers 

for five real-world plants with different properties (orders and time-constants). 

Carried out analysis allowed to confirm the advantageousness of the approach 

(in a sense of satisfaction of all of the optimization problem conditions). We 

hope, that the methodology may be useful for other PI or/and PID-controllers 

tuning problems, as well as for non-classic control systems (based on fuzzy-

logic, artificial neural networks, etc.). Current research is limited by linear 

plants. Thus, further investigations should involve non-linear ones. Another 

direction for further researches is connected with developing optimal 

controllers for MIMO-systems. 
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CHAPTER 3. ARTIFICIAL NEURAL NETWORKS AS OPTIMAL 

CONTROLLERS 

 

One of the current trends in the development of the theory of automatic control 

is connected with the application of artificial neural networks. This trend is caused by 

the fact that the latter may be used to develop automatic control systems for quite 

complex (often non-linear) plants. In this case, all or some components of the phase-

vector of the plant, their higher time derivatives, all or some components of control 

(neural network output) may be under constraints. 

Additionally, the problem of synthesis of the controller, requires that a certain 

criterion (or set of criteria) should be minimized. These requirements in many cases 

complicate the problems of synthesis of the controller. 

The artificial neural network can be considered as a universal approximator [1], 

so the trained neural network can satisfy all (or almost all) conditions of the problem 

of the automatic controller synthesis. 

Thus, the initial problem is reduced to the problem of training the artificial 

neural network. The latter is considered as an optimization problem. 

Most commonly the method of backpropagation (BP) of the error [2] and the 

method of stochastic gradient [2] are used to train the artificial neural network. It is 

known that gradient methods in the process of finding a solution of a problem may 

get stuck in the local extremums of the loss function. This reduces the effectiveness 

of their application. 

Metaheuristic (non-gradient) optimization methods are also used to train 

artificial neural networks. It should be noted that with a small number of parameters 

that need to be found (weights and biases of network neurons) it is advisable to use 

these particular methods. 

However, with a large number of parameters (thousands or even millions of 

parameters) metaheuristic optimization methods in terms of the number of 
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calculations becomes quite expensive. Therefore, metaheuristic approaches should be 

used in training of the artificial neural networks, including in the field of automatic 

control, because the number of adjustable parameters of neurocontrollers is relatively 

small. 

Thus, there is a need to develop the method of training the artificial neural 

networks that may be used to control technological processes and that would meet the 

requirements of minimizing one or more optimization criteria and provide the 

constraints imposed on the process. 

 

3.1 Analysis of the scientific and applied publications on the topic of the 

study 

 

3.1.1 The quantitative analysis of the publications 

 

In order to conduct a quantitative analysis of scientific and technical 

documents on the subject of the study, we use data from scientometric databases 

Scopus, Web of Science, Google Scholar, as well as data provided by the website of 

German Patent and Trade Mark Office [3]. 

In order to perform the analysis in these databases, queries were made for the 

word „neurocontroller”, the phrase „neural network in control” and the phrase 

„neural network PSO” (neural network with the method of particle swarm 

optimization). Such inquiries allow us to establish the main trends in the application 

of artificial neural networks in the field of automatic control, their training and 

application for these problems of the method of particle swarm optimization (PSO), 

and its modifications.  

All data obtained correspond to the date of the request February 5, 2020. 

When working with the scientometric database Scopus, the queries were 

performed by the title of the article, a brief description, and keywords. As a result of 

the review of the number of publications on the generated queries, the obtained data 

were listed in Table 3.1-3.4. 
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Table 3.1 Number of publications on the study topic in the scientometric database 

Scopus by year 

Year Total in 

the 

database 
2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 

The query for the word „neurocontroller” 

3 11 4 8 9 11 11 12 12 16 507 

The query for the phrase „neural network in control” 

967 8857 7763 6244 5085 4697 4525 4403 4235 4423 51199 

The query for the phrase „neural network PSO” 

155 978 786 618 570 494 494 494 474 424 7185 

 

Table 3.2 Top 10 countries by number of the publications in the scientometric 

database Scopus during 2020-2011 

The query for the word „neurocontroller” 

Country 
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17 11 8 6 6 5 5 4 3 3 

The query for the phrase „neural network in control” 
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publications 
17122 9131 3288 2757 2414 1850 1641 1498 1478 1366 
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Table 3.2 continuation 

1 2 3 4 5 6 7 8 9 10 11 

The query for the phrase „neural network PSO” 

Country 
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Number of 

publications 
3386 834 581 409 307 241 184 176 166 133 

 

Table 3.3 Number of the publications on the topic in the scientometric database Web 

of Science by year 

Year Total in 

the 

database 
2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 

Query for the word "neurocontroller" 

8 6 5 7 10 8 9 7 4 9 367 

1 1 1 4 3 1 - 3 3 2 126 

Query for phrase "neural network in control" 

7441 7278 6123 5133 4328 3823 3371 3046 2841 2462 72412 

84 88 83 63 65 50 53 47 49 53 1514 

Query for phrase "neural network PSO" 

625 558 453 404 381 338 277 244 250 185 4728 

32 34 29 35 33 34 14 29 19 21 427 

 

Table 3.3 shows the data obtained when processing queries in the scientometric 

database Web of Science. The top rows of Table 3.3 correspond to the topic of the 

query, and the bottom – to the name of the query. 

The query „neurocontroller” in the scientometric database Google Scholar for 

2020-2011 allows access to about 10300 documents. During the same period, the 
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number of publications available on query „neural network in control” is about 

1350000 documents. The query for the phrase „neural network PSO” in the Google 

Scholar database provides access to 24,200 documents that were published during 

2020-2011 years. 

The query on the website of the German Patent and Trade Mark Office was 

executed according to patent classes G05B13/027 „ Adaptive control systems, i.e. 

systems automatically adjusting themselves to have a performance which is optimum 

according to some preassigned criterion electric the criterion being a learning 

criterion using neural networks only” and G06N3/02 „Computer systems based on 

biological models using neural network models”. 

 

Table 3.4 Number of the patents obtained during 2020-2011 under classes 

G05B13/027 and G06N3/02 

Patent  

class 

Year 

2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 

G05B13/027 702 546 296 168 82 63 38 67 58 48 

G06N3/02 4481 3091 2006 1220 723 809 589 422 376 306 

 

Thus, the number of the scientific documents that are placed in scientometric 

databases Scopus, Web of Science, Google Scholar, and patents obtained over the 

past ten years in the world, as well as trends in their number shows a significant 

interest of the scientific community in developing and using technologies which are 

based on the capabilities of the artificial neural networks. 

 

3.1.2 The content analysis of the publications 

 

The first practical application of the PSO method for problems of training of 

the artificial neural networks was proposed together with the development of the 

method itself [4] in 1995. In this subsection, we will analyze some scientific papers 
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related to the training of the neural networks using the PSO method or its 

modifications. 

In the paper [5], a thorough analysis of modifications of the PSO method and 

the problems in which they were applied are given. In particular, the authors cited the 

problems in which PSO modifications were used to train the artificial neural 

networks. For example, Zhang and Wu in the paper [6] proposed the modification of 

the adaptive chaotic method (ACPSO) to determine the weights and biases of a two-

layer (by the number of hidden layers) neural network of direct propagation. The 

latter was used to develop a hybrid classifier of plant images. 

The authors of the paper [7] used the PSO method to adjust the weights of the 

neurocontroller, which controlled the mobile robot in real time. 

In the paper [8], three different types of neural networks were constructed. 

Here it has been shown that the use of the neural networks, the parameters of which 

are selected by using PSO method and genetic algorithm (GA), have much better 

prediction characteristics than individual models or linear combinations of models. 

In the paper [9] the improved PID controller for the problem of gas pressure 

control is presented. The developed algorithm, which is based on the neural network 

on radial basis functions and the PSO method, was used to adjust the parameters of 

the PID-controller. The theoretical analysis and simulation of the controller operation 

performed by the authors showed a reduction of the settling time and an improvement 

of the control in the setpoint monitoring mode. 

In the paper [10], Perng and other authors proposed the combination of the 

PSO method and the artificial neural network based on radial basis functions to 

determine the optimal operating point of the wind turbine PID controller and to 

identify the stability area of the automatic system in the parameter space. 

Mandal and others in the paper [11] solved the problem of short-term 

forecasting of the energy production by using the windmills based on meteorological 

information. The paper presents aggregate forecasts for wind farms using an 

intelligent algorithm based on wavelet filtering of data and the artificial neural 

network, which was optimized by using the PSO algorithm. 
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The authors of the paper [12] used the adaptive method of variant of the PSO – 

ACPSO – to train the artificial neural network. The latter acted as a classifier of brain 

images obtained during magnetic resonance imaging. The accuracy of the classifier 

based on a sample of 160 images was 98.75%. 

In the paper [13], the PSO algorithm was used to supplement the BP method, 

which is widely used to train artificial neural networks. This training strategy was 

used to identify a nonlinear system of the bioreactor of yeast fermentation. In 

addition, it has been shown that this approach is better than BP network training. 

Saraswathi and other researchers in the paper [14] used the combination of the 

GA and PSO methods in combination with the neural network for the problem of 

gene selection and cancer classification. 

A new hybrid model combining the artificial neural network and the chaotic 

PSO method was proposed in the paper [15] to increase the prediction accuracy. In 

the paper [16], the modification of PSO without configurable parameters for the 

problem of training of the artificial neural network is proposed. 

In the paper [17], Asadnia and other scientists used an improved PSO method 

to train the artificial neural network to predict the water level of the Heshui watershed 

(Gansu Province, China). The results presented in the paper showed a fairly good 

forecast of low and high water levels in the area in comparasion with other models. 

In the paper [18], Das and other researchers used the artificial neural network 

with the PSO method to solve the problem of the frequency correction of the data 

channel. In this paper, PSO was used not only to determine the weights of the 

neurons but also to obtain the optimal network topology and activation functions of 

the neurons. 

Conradie and other scientists in [19] investigated the possibility of extending 

standard neurocontrollers in industrial processes by using a PSO-based algorithm. 

The PSO method was chosen in studies because it allows changing the weight of the 

neurocontroller when changing the environment without turning it off. The researches 

of using the nonlinear bioreactor model have shown that the profitability of the 

process can be significantly improved without destabilizing it. 
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The PSO method has also been successfully applied to fuzzy neural networks. 

In particular, in the paper [20] Lin and other authors used the hybrid of the PSO 

method and the local approximation method, and the multi-elite strategy to improve 

the training of the Takagi-Sugeno-Kang neural network. This hybrid method has 

replaced BP. Its application has shown a more accurate and efficient training process 

of the neural network. 

In the paper [21], the comparative analysis of different methods of initialization 

of the swarm population in the problem of training the neural networks, which acted 

as classifiers, was conducted. The results obtained on the basis of solving eight test 

problems showed the advantage of using a logarithmic-logistic sequence for the 

initialization of new particle positions. 

In the paper [22], the hybrid of PSO and Cuckoo Search (CS) methods were 

developed, which the authors used to train the direct propagation neural network that 

acted as a classifier. The results obtained on the axial analysis of two test problems of 

classification showed that the new method coincides faster and has a lower tendency 

to fall into local minima, so it is recommended for use for training neural networks. 

As mentioned above, the standard approach to training an artificial neural 

network is to use the BP method. Thus, BP and PSO are competitors in this sense. 

The effectiveness of these methods is the subject of many studies. In particular, in the 

paper [23] it was found out that for the neural networks of the direct propagation the 

PSO algorithm in terms of the number of calculations is more efficient than BP. PSO 

is best for applications that require rapid training. In addition, the effectiveness of the 

neural network training using BP depends on the choice of initial bias values, while 

for PSO this factor is not influential. The authors also drew an important conclusion: 

in the case when the object of the training sample is small, the use of PSO allows to 

reduce the number of calculations by six times than when using the BP method. In 

this study, the recurrent neural networks, with similar conclusions, were also 

investigated. 

Similar studies were conducted by Nasser Mohammadi and Seyed Javad 

Mirabedini. In the paper [24], they cited the main disadvantages of the BP method: 
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the slow convergence and the ability to reach the local minimum. In contrast, PSO 

avoids these shortcomings. The experimental results showed that the algorithm based 

on the Levenberg–Marquardt method (which is essentially one of the types of BP) 

achieved better network training performance than all other BP algorithms 

(multilayer perceptrons were used in the study). The comparative analysis of these 

results with those which were found out during the use of PSO, showed the advantage 

of the latter method. 

In the paper [25], the algorithm was developed for the problem of training the 

single-layer neural network, which allows the application of optimization methods 

belonging to the specific class: PSO, Intelligent Water Drops (IWD), Ant Colony 

Optimization (ACO), Artificial Bee Colony (ABC). Their advantages and 

disadvantages for problems of this type are established. As for PSO, this method 

showed the premature and rapid convergence, the impossibility of the convergence in 

the local search area, and its residual error depends on the application problem for 

which it is used. 

In the paper [26], the authors compared the methods of BP and PSO to adjust 

the weights of the neural network-classifier. The results of the study did not allow the 

authors to give an unambiguous answer to the question: which of the algorithms is 

best for the problems of training the neural networks. However, the data obtained by 

the authors suggested that PSO provides better training accuracy for linear problems. 

In addition, the authors argue [27] that the advantage of PSO over BP is that it allows 

to change other network parameters (for example, the activation function of the 

neuron), and BP does not have this capability. 

In the paper [28], the authors proposed the approach that involves using the 

ACO method to determine the architecture of the neural network and then using the 

PSO method to perform its training. In the paper [29], a hybrid of the PSO method 

and another method (simulated annealing), was used to determine the weights and 

biases of the neural network. 

In other works, such as the paper [30], the adjustable elements in the problem 

of the neural network training were its architecture, activation function of the neuron, 
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and set of weights. In this paper, the authors proposed a new model of the PSO 

algorithm (NMPSO), while in the paper [31] the same authors solved the problem by 

using the method of differential evolution. 

3.2 The development of a method for training the artificial neural 

networks 

The first stage in the study is to specify the class of networks for which the 

calculations are performed. We will consider the feedforward neural networks. In the 

general case, there are no constraints on the dimensionality of the input and output 

vector of the network, the number of hidden layers, and the number of neurons in the 

network. In addition, there are no constraints on the type of the activation function of 

neurons, except in some cases of the output layer: for example, for many automatic 

control problems, the values of the components of the output vector may include both 

negative and positive values. In this case, the ReLu-type activation functions do not 

meet this requirement and other activation functions (e.g., sigmoid) should be used. 

There is also no requirement for the differentiation of the activation functions. In the 

research, we will use the model of the neuron, which is presented in Fig. 3.1. 
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Fig. 3.1 The graphical representation of the artificial neuron model 

The mathematical model of the neuron is described by the following 

expression: 
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(3.1) 

where wα.β.γ is the weight of the synapse of the γ-th neuron in the α-th layer, which 

transmits a signal from the β-th neuron of the previous (i.e. from (α-1)-th) layer; A is 

the number of layers of the neural network, including input and output layers; B is the 

number of neurons in the previous layer; Г is the number of neurons in the current 

layer; bα.γ is the bias (signal shift) of the γ-th neuron in the α-th layer; f is the 

activation function of the neuron (without reducing the generality, we assume that the 

activation functions for all neurons are the same); uα.γ is the output signal of the γ-th 

neuron in the α-th layer; u(α–1).β is the output signal of the β-th neuron in the (α-1)-th 

hidden layer. The general structure of the artificial neural network is shown in Fig. 

3.2. 

Given the expression (3.1) and the structure shown in Fig. 3.2, we can write the 

following dependencies, which describe the components of the output vector Y of the 

network: 

(3.2) 

The problem of training the artificial neural network is to determine such 

values of the weights of the synapses wα.β.γ and biases bα.γ, at which a certain criterion 

reaches an extremum (type of extremum: minimum or maximum is determined in the 

statement of the problem). The essence of this criterion will be disclosed below. 

Next, we determine the number of unknown parameters of the neural network 

that need to be determined during its training. For the network, the structure of which 

is shown in Fig. 3.2, for this purpose it is necessary to use the following formula: 

   ,)2()3()( 2 MГAГAГMNVVV bw  (3.3) 

where Vw and Vb are the numbers of weights of the synapses and the number of 

biases, respectively. 

,),1(,),1(,),2(,.

1

..).1(. ГBAbwufu
B















 



 




).,1(,. Mmuy mАm 



V
e
c
to

r 
o
f 

in
p
u
t 

v
a
ri

a
b
le

s 
X

(p
h
a
se

 c
o
o
rd

in
a
te

s)

H
id

d
e
n
 l

a
y
e
rs

х
1

х
Nх
n

V
e
c
to

r 
o
f 

o
u
tp

u
t 

v
a
ri

a
b
le

s 
Y

(c
o
n
tr

o
l)

w
3

. β
.γ

L
a
y
e
r 

2
L

a
y
e
r 

3
L

a
y
e
r 
α

L
a
y
e
r 
А

-1
L

a
y
e
r 

1

(i
n
p
u
t)

L
a
y
e
r 
А

(o
u
tp

u
t)

w
А

.β
.γ

m

y
1

y
M

y
m

b
2

.1

w
2

.n
.1

w
2

.1
.1

w
2

.N
.1

1 2 Гγ

1 2 Гγ

u
2

.1

u
2

.2

u
2

. γ

u
2

.Г

1 2 Гγ

1 2 Гγ

b
3
.1

..
.b

3
.Г

w
α

.β
.γ

w
А

-1
.β

.γ

b
α

.1
..
.b
α

.Г
b

A
-1

.1
..
.b

A
-1

.Г
b

A
.1

..
.b

A
.Г

1 n N

1 M

F
ig

. 
3

.2
 T

h
e 

g
en

er
al

 s
tr

u
ct

u
re

 o
f 

th
e 

ar
ti

fi
ci

al
 n

eu
ra

l 
n

et
w

o
rk

*
 

*
th

e 
in

p
u
t 

(f
ir

st
) 

la
y
er

 o
f 

th
e 

ar
ti

fi
ci

al
 n

eu
ra

l 
n

et
w

o
rk

 d
o
es

 n
o
t 

p
er

fo
rm

 t
h

e 
si

g
n

al
 c

o
n

v
er

si
o
n

. 
It

 o
n

ly
 p

ro
p
ag

at
es

 t
h

e 
si

g
n

al
s

(c
o

m
p

o
n

en
ts

) 
o

f 
th

e 
in

p
u

t 
v

ec
to

r 
X

 t
o

 t
h
e 

h
id

d
en

 l
ay

er
s 

o
f 

th
e 

n
et

w
o

rk
. 

In
 F

ig
. 

3
.2

 t
h
e 

d
im

en
si

o
n

 o
f 

th
e 

in
p
u
t 

v
ec

to
r 

X
 i

s 

d
en

o
te

d
 b

y
 N

, 
an

d
 t

h
e 

o
u
tp

u
t 

Y
 b

y
 M

. 
T

h
e 

p
h

as
e 

co
o

rd
in

at
es

 i
n

 t
h

e 
co

n
tr

o
l 

p
ro

b
le

m
s,

 a
s 

a 
ru

le
, 

co
rr

es
p
o

n
d
 t

o
 t

h
e 

co
n
tr

o
l 

er
ro

r 

an
d

 i
ts

 h
ig

h
er

 t
im

e 
d

er
iv

at
iv

e
s.

 T
h
e 

co
m

p
o

n
en

ts
 o

f 
th

e 
co

n
tr

o
l 

v
ec

to
r 

co
rr

es
p
o

n
d

 t
o

 t
h

e 
si

g
n

al
s 

fo
r 

ac
tu

at
o

rs
 o

f 
th

e 
au

to
m

at
ic

 

co
n

tr
o
l 

sy
st

em
. 

CHAPTER 3. ARTIFICIAL NEURAL NETWORKS AS OPTIMAL CONTROLLERS

78 



79 

Note that expression (3.3) is valid only for the case when the number of 

neurons in the hidden layers is the same, which, however, does not reduce the 

generality of the method of training artificial neural networks, which will be 

described below. 

In order to train the neural network, it is necessary to choose the most 

suitable among the known paradigm: supervised learning, unsupervised learning, 

reinforcement learning. In general, the choice of paradigm should be based on 

available learning data. If one knows the training sample (the set of training pairs 

„input-output”, which reflect the dynamics of the plant), it is necessary to choose 

the supervised learning paradigm. If the mathematical model of the plant is known 

(for example, its transfer function), it is necessary to choose the reinforcement 

learning paradigm. In this case, the agent is the neural network and the 

environment is the plant. This is the paradigm that will be used in the current 

study. Hereafter, the neural network that will act as a controller will be called a 

neurocontroller. In the general case, the plant is a MIMO system (multiple input 

multiple output). For the linear plants, their mathematical model can be described 

by using the matrix transfer function G: 

(3.4) 

where Gn.m is the transfer function of the m-th component of the input vector of the 

plant Y (the neurocontroller output vector) to the n-th component of the output 

vector of the plant X (the neurocontroller input vector) (Fig. 3.3). 
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Fig. 3.3 Relationships between the plant and the neurocontroller 
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For the linear and nonlinear plants, their dynamics can also be described 

using the differential equations system: 

(3.5) 

where F is a nonlinear vector function. The dot above the symbol means the 

derivatives by time. 

The key concept of this paradigm is the reward, which is the measure of the 

network quality approximation to a predetermined ideal. The trained network, 

interacting with the environment, receives the reward, and the training of the 

network is to select such unknown values of wα.β.γ and bα.γ at which reward will be 

maximum. In this study, we will not use this concept by replacing it with the 

concept of „optimization criterion” and noting that there is an inverse relationship 

between them. 

In order to describe the optimization criterion that will be used to train the 

neurocontroller, we present a statement of the problem of the neurocontroller 

optimization: 

(3.6) 

where P is the matrix of nonlinear operators of the neurocontroller, which 

corresponds to the transformation of the input vector X into the output Y; Crκ is the 

κ-th criterion of minimization (without reducing the generality of the problem, we 

assume that all criteria reflect the undesirable characteristics of the controlled 

process and therefore should be minimized); K is the total number of optimization 

criteria; fλ is the λ-th function, which in the general case depends on the vectors X 

and Y; Fλ is the limit value of the λ-th function; L is the total number of constraints 
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in the optimization problem. The first line of the system (3.6) reflects the 

mathematical model of the plant, the second reflects the neurocontroller, the third 

one – reflects the requirement of control stability, the fourth reflects the constraints 

imposed on the control process, and the fifth reflects the set of criteria to be 

minimized. Note that the statement part of the problem is similar to that used in the 

study [32]. This analogy makes it possible to perform the transformation of the 

system (3.6) and replace it with only one criterion, which will be used in the 

neurocontroller training process. This criterion is described as follows: 

 

(3.7) 

 

where Ter, Crineq, and CC are the criteria: terminal, caused by constrains and 

complex, respectively. The terminal criterion is described by the following 

dependence: 

 

(3.8) 

 

where T is the moment when the stability conditions are met; vn is the small 

allowable value of the n-th component of the vector X; δT is the terminal 

coefficient, which reflects the importance of achieving stability conditions. The 

absolute minimum of criterion (3.8) is zero: when it is reached, the requirements 

for the stability of the control process are met. The criterion caused by the 

constraints may be written as follows: 

 

 

(3.9) 

 

 

where y is the index of the unfulfilled inequality in the requirements (3.6); Y is the 

total number of the unfulfilled inequalities; δp is the penalty coefficient. According 
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to the study [32], the essence of criterion (3.9) is that if at least one inequality is 

not fulfilled, the criterion will have a significant value. On the other hand, if all 

inequalities are met, the Crineq criterion becomes zero and does not affect the 

further minimization of the generalized criterion (3.7). 

The set of optimization criteria Crκ can be replaced by one, which is 

described by the following expression [32]: 

 

(3.10) 

 

where wκ is the κ-th weight coefficient, which reflects the importance of the 

criterion Crκ; gκ is the coefficient of the κ-th criterion, which reduces the product 

Crκgκ to the dimensionless form. This form of the comprehensive criterion allows 

on a compromise basis to perform the optimization criteria convergence of 

different importance to one criterion. The latter is represented as the linear 

convolution [32]. 

The values of the coefficients δp and δТ make it possible to form the required 

topology of the criterion (3.7). The developed criterion (3.7) allows application of 

the method for the neurocontroller training. In order to illustrate the developed 

method, Fig. 3.4 shows its block diagram. 

At the initial stage of the algorithm, the constant parameters of the ME-D-

PSO method are initialized [32]: the number of iterations R, the size of the swarm 

population D, and the acceptable rate AR the global best GB decreasing. The next 

step is to initialize the positions and velocities of the swarm particles. The position 

of each particle will be characterized by a V-dimensional vector. The first branch 

of the block diagram (Fig. 3.4) means checking the condition r<R, which indicates 

the end of all iterations of the algorithm. In case if all iterations have not been 

performed yet, it is necessary to go to the cycle. The first operation of the body of 

the cycle is to determine the values of Cr, which correspond to the initialized 

particles’ positions. It is necessary to access the function Cr, which receives the 

input V-dimensional vector whose components are the values of the weights wα.β.γ 
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and biases bα.γ of the neurocontroller, and at the output forms a scalar value of Cr. 

The operation of this function will be discussed later. 

Initialization of constant parameters of the method ME-D-

PSO: R, D, AR. Start condition r=1

+ -

Ter=0 ˄ Crineq=0
+ -

Start

End

Initialization of positions and velocities of particles

Determination of values Cr, 

which correspond to the positions 

of the particles

Determination PBr.d for each 

particle and GBr for whole swarm

Update of components of  

velocity and position vectors of 

particles

+ -

r

rr

GB

GBGB
АR 1



Rr  r=1

r++

 

Fig. 3.4 Block diagram illustrating the neurocontroller training method 

 

The personal best PBr.d for each particle and the global best GBr for the 

whole swarm should be then calculated (the lower index r in the PBr.d and GBr 

records indicates the iteration number at which these values were obtained, and the 

lower index d in the PBr.d record indicates the number of the particle that has the 

value of personal best). Branching in the body of the cycle allows testing the 

effectiveness of the global minimum search. Failure to meet the condition 
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r

rr

GB

GBGB
АR 1

  is an indicator of swarm stagnation. In this case, the swarm must 

be reinitialized (a new epoch of the swarm should be launched [33]). If the swarm 

effectively searches for the minimum of the Cr function, then the velocity vectors 

and positions of each of the swarm particles are updated. At the end of all 

iterations of the cycle (i.e. under the condition r=R) the condition of stability of 

control Ter=0 and the conditions of constraints satisfaction Crineq=0 is checked. If 

these conditions and constraints are not met, the algorithm must be run for re-

execution. This is due to the mandatory fulfillment of these conditions. In order to 

fully understand how the method works, it is necessary to describe how to access 

the Cr function. To do this, in Fig. 3.5 we present its block diagram. 

Initialization of initial conditions of the plant: 

t:=0, X(0).

Initialization of constant parameters of the plant 

and neurocontroller

+ -
t<T

Start

End

Calculation of components of the 

vector Y

t:=t+Δt

Input of components of tensor W and 

matrix В

Calculation of components of the 

vector Х

Calculation of value Cr

Output of the value Cr

  

Fig. 3.5 Block diagram of the Cr function  

 

At the initial stage of the function, the components of the tensor W and the 

vector B are introduced. Then the initial parameters of the plant (coefficients of the 
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matrix transfer function) and the neurocontroller (for example, the type of 

activation function), as well as the initial conditions (phase coordinates of the plant 

and settings at the beginning of the control process) are initialized.  

After that, the algorithm goes into the cycle: after passing the body of the 

cycle, the condition t<T of the end of the simulation of the control process is 

checked. The components of the vector Y (using the neurocontroller model) and 

the vector X (using the model of the plant) are calculated in the body of the cycle 

for a certain time step. When all time steps are performed, the cycle is exited and 

Cr is calculated. At the last stage, Cr is gone as an output. 

In order to illustrate the application of the developed method, the 

calculations of the neurocontroller were performed for several plants. These studies 

are described in the following. 

 

3.3 The results of the neurocontroller operation simulation 

 

For all of the calculations below, the neurocontroller was the artificial 

feedforward neural network consisting of three layers (one of which was hidden 

with five neurons). The activation function for all neurons is arctangent (Fig. 3.6). 

 

Fig. 3.6 Plots of the neurons network activation function 
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Hereafter we will consider several options for the synthesis of the optimal 

neurocontrollers. 

 

3.3.1 Linear MISO plants 

 

At the first stage of the study of the method efficiency we will use some 

transfer functions of the plants which are used in the papers [34, 35] (Table 3.5). 

Table 3.5 Transfer functions of the plants and their features 
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general structures of the controllers. 

Transfer functions of real plants 
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The grain dryer. The plants of this type 

are usually described by the second-

order models and have a significant 

time constant. 
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Table 3.5 continuation 

1 2 
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The electric drive of the mobile robot 

operating in the greenhouse. Such an 

electromechanical system has 

extremely fast transients and is 

described by the second-order model. 

 

The real plants are selected in such a way that their time constants differ by 

orders of magnitude. This variety of the parameters will allow confirming the 

method applicability for the different plants, i.e. those whose features and 

properties differ significantly. In turn, this will confirm the generality of the 

developed approaches. 

For control systems, in which the neural network must be located, the 

constraints are imposed on zero overshoot. This constraint is presented as follows: 

 

(3.11) 

 

The optimization criterion in the conducted studies was the following value: 

 

(3.12) 

 

which on a compromise basis reflects the requirement to minimize RMS control, 

the error, and the settling time. It should be noted that the optimization criterion 

may be another value. The optimization methodology would not have changed. 

In addition, this study did not take into account the importance of the 

individual criteria, as they depend on the specifics of the problem. The purpose of 

this study was to show the possibility of applying the developed approach to the 

optimal neurocontrollers synthesis. 
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For the plants (Table 3.5) it is set that the allowable error v0 (for all control 

problems r=1) is 0.005, and for higher derivatives of the error in time v1=v2=0.005. 

The parameters of the ME-D-PSO method are as follows: the number of iterations 

R=100, the size of the swarm population D=20, the value of the criterion 

acceptable rate AR = 0.01. 

Using expression (3.3), the number of the unknown values to be found out 

was obtained. For the transfer functions G1(s), G3(s), G4(s) V=21, and for G2(s) 

V=26. The search domain for the optimal value of each argument (weights and 

biases of the neural network) is given by the limits -4 and 4. 

As a result of the developed method application, the components of the 

tensor W and the vector B are obtained, which minimize the criterion (3.12) for all 

plants. The graphical dependencies are shown to illustrate the obtained results. 

Fig. 3.7 shows the plots that correspond to the training process of the neural 

network and its operation in the control loop of the plant with the transfer function 

G1(s) (hereinafter, all plots correspond to the setpoint mode). Note that from Fig. 

3.7 (a) it is seen that the constraints (3.11) are met, i.e. the system goes to the 

setpoint without the overshoot. 

Analyzing the plots shown in Fig. 3.7 (b), we can see the topology of the 

criterion Cr. As indicated in the paper [32], this is a topology of the „pit in the pit” 

type: the first two iterations are performed in the „upper pit” criterion, the next 

seventeen iterations – in the „middle pit”, and the rest – in the „bottom pit”. Since 

both conditions Ter=0 and Crineq=0 were met, there was no need to restart the ME-

D-PSO algorithm. 

Similar results were obtained for the plant, which is described by the transfer 

function G2(s) (Fig. 3.8): the first iteration corresponds to the swarm movement in 

the „upper pit”, from the twenty-third iteration the algorithm „collapses” into the 

„lower pit” and then performs search for the minimum of the criterion only (3.12).  



CHAPTER 3. ARTIFICIAL NEURAL NETWORKS AS OPTIMAL CONTROLLERS 

89 

 

а) 

 

b) 

Fig. 3.7 Plots of the dynamics of the controlled variable (black curve) and 

control (gray curve) of the plant with the transfer function G1(s) (а) and the 

generalized criterion reduction during the optimization procedure (b) 
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In the „bottom pit”, the ME-D-PSO algorithm searches for the global 

minimum of the criterion (3.21), which was accompanied by several re-

initializations of the swarm [33]. 

 

 

а) 

 

b) 

Fig. 3.8 Plots of the dynamics of the controlled variable (black curve) and 

control (gray curve) of the plant with the transfer function G2(s) (а) and the 

generalized criterion reduction during the optimization procedure (b) 
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From Fig. 3.8 (a) it is seen that the control signal (the neurocontroller output 

signal) is a smooth function, and the controlled variable has no overshoot, i.e. the 

condition (3.11) is met. 

In order to establish the method suitability of training the neural networks 

for the control of the real plants, the problems were solved for which it was 

necessary to minimize the value (3.12) with the constraint (3.11) for the plants 

described by the transfer functions G3(s) and G4(s).  

As a result of the calculations, the values of the weights and biases, 

corresponding to the conditions of the problem, were obtained. The obtained 

results will be presented in the form of graphical dependences (Fig. 3.9 and Fig. 

3.10). 

The analysis of the dynamics of the temperature setpoint (relative value) 

reaching the grain dryer shows a smooth, without an overshoot, output to a steady 

state. The obtained control mode allows minimizing the criterion (3.12). 

 

 

а) 
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b) 

Fig. 3.9 Plots of the dynamics of the controlled variable (black curve) and control 

(gray curve) of the plant with the transfer function G3(s) (а) and the generalized 

criterion reduction during the optimization procedure (b) 

 

Similar dynamics is observed for the electric drive robot, i.e. the system 

described by the transfer function G4(s) (Fig. 3.10, a). The settling time for this 

plant is small (about 0.08 s). 

However, as for the algorithm’s operation, there are significant differences. 

For the plant with the transfer function G3(s), the convergence to the minimum of 

the criterion (3.12) is typical: first, a significant decrease in the value of the 

criterion due to the transition from the „upper pit” of the criterion (3.12) to „middle 

pit” during the first ten iterations; further „collapsing” of the swarm into the 

„bottom pit” on the thirty-ninth iteration. 

For the algorithm that performed the minimization of the criterion (3.12), 

which corresponds to the parameters of the electric drive robot (described by the 

transfer function G4(s)), the first fifty-eight iterations were inefficient. In the 
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subsequent iterations, the algorithm was able to find the first local minimum of the 

criterion, followed by others.  

 

а) 

 

b) 

Fig. 3.10 Plots of the dynamics of the controlled variable (black curve) and control 

(gray curve) of the plant with the transfer function G4(s) (а) and the generalized 

criterion reduction during the optimization procedure (b) 
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This feature was also noticed when the algorithm was restarted: the 

minimization of the criterion (3.12) was not performed on the first iterations of the 

algorithm. This feature should be taken into account in such cases by increasing 

the number of iterations. 

The neural network training method was also used for the synthesis of the 

optimal motion controller of the „crane-load” system (Fig. 3.11). 

 

Fig. 3.11 Dynamic movement model of the „crane-load” system 

 

The plant, the dynamic model of which is shown in Fig. 3.11, is described 

by the following system of differential equations: 

 

(3.13) 

 

where m1 and m2 are the reduced masses of the crane and the load, respectively; х1 

and х2 are generalized coordinates of the reduced masses m1 and m2, respectively; l 

is the length of the flexible suspension; F is the driving force; W is the force of the 

crane resistance of movement. 

The neurocontroller operation for this plant is that it is necessary to bring it 

to a steady speed, and eliminating the oscillations of the load on the flexible 
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suspension and minimize the optimization criterion. The boundary conditions of 

the system may be written as follows: 

 

(3.14) 

 

where vn is the nominal speed of the crane. 

The constraints imposed on the movement of the system are due to the 

limited overload capacity of the engine of the crane movement mechanism 

(limitation on the amount of the driving force) and the limited supply voltage (it 

causes the constraints on the speed of the driving force change). Both constraints 

may be written as follows: 

 

(3.15) 

 

where Fmin and Fmax are the maximum and minimum values of the driving forces of 

the drive, respectively; Ḟmin and Ḟmax are the maximum and minimum values of the 

rates of the driving forces change, respectively. 

In addition, in the problem the constraint on the crane speed is imposed: it 

should not exceed the nominal value (i.e. the speed overshoot should be absent): 

 

(3.16) 

 

The optimization criterion in this problem is a complex one, which on a 

compromise basis reflects the duration of the control and the root mean square 

value of the dynamic component of the drive power. It is described by the 

following dependence: 
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where Рdyn is the dynamic component of the drive power. 

The system model (3.13) is linear; however, criterion (3.16) is nonlinear. In 

addition, the calculations are complicated by the presence of the constraints (3.15) 

and (3.16). 

The calculations were performed for the crane with the following 

parameters: m1=42000 kg, m2=25000 kg, l=5 m, vn=1.2 m/s, Fmin=-56250 Н, 

Fmax=56250 Н, Ḟmin=-400 kН/s, Ḟmax=400 kН/s, vn=1.2 m/s; W=6573 Н. 

The application of the neurocontroller training method for this problem 

allowed us to obtain such values of the components of the tensor W and the vector 

B, at which all the conditions of the problem (3.13)-(3.16) are met. In order to 

illustrate the obtained results, the plots of functions were built (Fig. 3.12). 

In Fig. 3.12 (a) the initial and final values of the phase vector are shown in 

gray dots. The phase trajectory of the system begins at the origin and ends at a 

point that corresponds to the steady motion of the system with velocity vn.  As can 

be seen from Fig. 3.12 (a) the load oscillations at the end of the crane start are 

absent, as evidenced by the zero values of Δх and Δẋ at the end point of the phase 

trajectory. 

 

а) 
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b) 

 

c) 

Fig. 3.12 Plots of the dynamics of the control of the plant „crane-load”: non-

classical phase portrait of the system in the coordinates „the difference between the 

positions of the crane and load ‒ the difference between the speeds of the crane and 

load ‒ crane speed” (a); the driving force (gray curve) and the power (black curve) 

of the crane drive (b); the generalized criterion reduction during the optimization 

procedure (c) 
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Thus, the system terminal conditions (3.14) are satisfied. In addition, Fig. 

3.12 (a) shows that the magnitude of ẋ1 does not exceed the nominal value of the 

crane speed. Fig. 3.12 (b) shows that the driving force is twice limited and changes 

its sign. 

However, criterion (3.16) also reflects the requirement to minimize the RMS 

value of the drive dynamic power, which has an impact on the obtained optimal 

law of the system motion. 

The power changes its sign, which is undesirable because it requires the 

ability to recover the electric energy from the system. In order to prevent such a 

phenomenon, it is necessary to set an asymmetric constraint on the driving force 

(3.15), as done in the study [36]. 

Thus, based on the method of training artificial neural networks, it was 

possible to synthesize the optimal neurocontrollers for several linear plants, which 

are characterized by different properties (unstable, oscillatory, with small and large 

time constants). In addition, the nonlinear constraint problem was solved for the 

problem of moving the „crane-load” system. All this suggests that the developed 

method of training the neural networks is an effective tool for the synthesis of the 

optimal controllers for the linear MISO plants. 

In the following, we will show its efficiency for the problems of the 

neurocontrollers synthesis that are operated in the control loops of the nonlinear 

MISO plants. 

 

3.3.2 Nonlinear MISO plants 

 

The next step in illustrating the effectiveness of the method of training the 

neural networks for control problems is involving of the underactuated systems as 

plants to control. Such systems are nonlinear and therefore the problems of optimal 

controllers synthesis for them are quite complex. 

The neurocontrollers synthesis will be performed for the systems whose 

dynamic models are shown in Fig. 3.13. 
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The first system is an inverted wheel pendulum or inverted pendulum with 

an inertial flywheel (Fig. 3.13, a) [37]. The flywheel is driven by the torque 

generated by the engine (Fig. 3.13, not shown).  

The inertial characteristics of the pendulum are represented by the reduced 

masses mw and mw. The inertial properties of the flywheel are represented by the 

consolidated moment of inertia J. 

The inverted pendulum (Fig. 3.13, b) is another model from the class of the 

underactuated nonlinear systems (such a system is also known as „cart-pole”, 

„inverted pendulum on a cart”) [38]. The cart moves in a horizontal plane, and the 

pendulum oscillates around the axis that is attached to the cart. The system 

movement is due to the driving force, which can change the sign. It is created by a 

drive (usually from a DC motor with PWM, or a stepper motor). 

The Furuta pendulum [39] (Fig. 3.13, c) is a vertical column, which is driven 

by the engine (in Fig. 3.13 is not shown). A boom is attached to the end of the 

column, and a pendulum link is attached to the end of the boom through a pivot. 

The masses m1 and m2 are located on the boom and the pendulum link, 

respectively. 
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c) 

Fig. 3.13 The dynamic models of the underactuated systems: a) the inverted 

pendulum with flywheel; b) the inverted pendulum; c) the Furuta pendulum 

 

The parameters of the underactuated systems determine the properties of 

their control (stabilization). In order to illustrate the developed method of training 

the artificial neural networks, we will assume that the system’s parameters are 

constant. 

The mathematical model of the first underactuated system (Fig. 3.13, a) is 

presented below: 

 

(3.17) 

 

where φ is the generalized coordinate of the pendulum (the angle of deviation of 

the pendulum from the vertical); ω is the angular velocity of the pendulum 

flywheel; g is the acceleration of the free fall; l is the distance from the center of 

mass of the pendulum to the axis of its rotation; L is the equivalent length of the 

pendulum; J is the inertia moment of the flywheel and rotor of the electric motor; 

M is the electromagnetic moment created by the engine; α1 and α2 are the 

coefficients determined from the following expressions: α1=Jp+mwL2, 

α2=(mpl+mwL)g; mp is the mass of the pendulum; mw is the mass of the flywheel 
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and the electric motor; Jp is the moment of the pendulum inertia. The numerical 

data used in the calculations for the first system are given below: L=2.9·10-1 m, 

l=2.6·10-1 m, J=1.5·10-3 kgm2, Jp =4.2·10-2 kgm2, mp =3.0·10-1 kg, mw =2.8·10-1 kg, 

Мmax=6.0·10-1 Nm (the maximum force of the system drive). The boundary 

conditions of the system are as follows: 

 

(3.18) 

 

The initial conditions of the system movement (3.18) mean the state of the 

rest of the pendulum (in the lower stable position) and the flywheel. The final 

(desired) conditions of the system mean the state of the rest of the pendulum in the 

upper unstable equilibrium position and the state of the rest of the flywheel. 

The inverted pendulum, the model of which is shown in Fig. 3.13 (b), is 

described by the system of the following nonlinear differential equations: 

 

(3.19) 

 

where x is the generalized coordinate of the cart; φ is the generalized coordinate of 

the pendulum; l is the equivalent length of the pendulum; mp and mc are the 

reduced masses of load and cart, respectively; F is the driving force acting on the 

cart. Numerical data for the second underactuated system, which are used in the 

calculations, are given below: l=5.0·10-1 m, mp =3.0·10-1 kg, mc=2.0·10-1 kg. In 

addition, the maximum drive force is limited by 5.0 H. 

The boundary conditions of this system are recorded as follows: 

 

(3.20) 

 

The initial conditions of the system movement (3.20) correspond to the rest 

of the cart and the position of the pendulum in the lower stable position of the 

equilibrium. The final (desired) conditions of the system mean the state of the rest 
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of the pendulum in the upper unstable equilibrium position, and the position of the 

cart must locate in its initial position. In addition, the movement of the cart is 

constrained with the following expression: 

 

(3.21) 

 

where хmax is the maximum permissible deviation of the cart from the initial 

position. This constraint is justified by the fact that the cart moves on rails, which 

in the conditions of real installation have a limited length. In the calculations 

below, the constraint хmax=0.5 m was used. 

The mathematical model of the third underactuated system (the Furuta 

pendulum) is represented by the nonlinear differential equations system: 

 

(3.22) 

 

where , α are the generalized coordinates of the system (the angle of the 

pendulum deflection and the angle of the boom rotation, respectively); M is the 

driving moment created by the engine; L1 and L2 are the lengths of the boom and 

pendulum link, respectively, relative to the axes of their rotation; l1 and l2 are the 

distance from the center of mass m1 to the rotation axis of the boom link and the 

distance from the center of mass m2 to the rotation axis of the pendulum link, 

respectively; m1 and m2 are the reduced masses, which are placed on the boom and 

the pendulum link, respectively; J0 is the reduced moment of the column inertia 

relative to the axis of its rotation, provided that the pendulum link is in the lower 

(stable) position of the equilibrium (
2
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for the first system are given below: L1=0.278 m, L2=0.3 m, l1=0.15 m, l2=0.148 m, 

m1=0.3 kg, m2=0.075 kg, J1=2.48·10-2 kg·m2, J2=3.86·10-3 kg·m2. In addition, the 

maximum drive torque should not exceed 1.0 Hm. 

The boundary conditions for the Furuta pendulum movement are as follows: 

 

(3.23) 

 

The initial movement conditions of the system mean the state of the rest of 

the system at the position of the pendulum in the lower stable position of the 

equilibrium, and the final conditions correspond to the state of the rest of the 

pendulum in the upper unstable position of the equilibrium. In general, the start 

and end positions of the boom are not required to be the same. However, we have 

accepted this condition in order to complicate the problem. 

The optimization criterion in the studies for all underactuated systems was 

the following value: 

 

(3.24) 

 

where u is the control, which for the system (19) denotes the driving force, and for 

the systems (3.17) and (3.22) the driving torque. The optimization criterion (3.24) 

is the sum of the settling time and the root-mean-square control value. The first 

component of criterion minimization (3.24) causes a rapid transition from the 

initial position to the final one, and the second improves the energy efficiency of 

the underactuated systems (the second component corresponds to the energy 

consumption of the drive). 

The parameters of the ME-D-PSO method for determining the unknown 

components of the tensor W and the vector B are left the same as those used in the 

previous subsection. As the problems are more complex, the number of iterations 

has been increased to 200. 
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The difference in the training problems of the neurocontroller is the number 

of unknown parameters of the artificial neural network (neurocontroller). Formula 

(3.3) was used to establish the number of unknown neural network parameters. For 

the first system (3.17) we obtained V=26, for the second one (3.19), and the third 

one (3.22) systems V=31. The different number of parameters that need to be 

found is related to the different dimensions of the neurocontrollers input vectors 

(or, similarly, the different orders of the underactuated systems). 

As a result of applying the method, the components of the tensor W and the 

vector B are obtained, which minimizes the criterion (3.24). The control dynamics 

for the first underactuated system (3.17) is shown in Fig. 3.14. The reduction of the 

generalized optimization criterion is shown in Fig. 3.14 (e). 

   

а)      b) 

  

c)      d) 
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e) 

Fig. 3.14 Plots of the control dynamics of the underactuated system inverted 

pendulum with flywheel: the pendulum angular position (a), the pendulum angular 

velocity (b), the flywheel angular velocity (c), the flywheel driving torque (d), (e) 

 

The graphical dependencies analysis, which is presented in Fig. 3.14 (a) and 

(b), shows that the obtained neurocontroller effectively transfers the pendulum into 

the upper unstable position. However, as can be seen from Fig. 3.14 (b), (c), (d), 

the synthesized controller has the disadvantage: a rapid increase of torque at the 

beginning of the control process. 

Obviously, in order to reduce the rate of increase of torque applied to the 

flywheel, it is necessary to introduce some constraints. Such constraints can be 

mathematically represented as a component of the integrand of the integral 

criterion (3.24) or in the form of a constraint on the rate of increase of torque (this 

value must be specified in the statement part of the problem). In the latter case, in 

the generalized criterion (3.7) it is necessary to enter the value that would reflect 

the number of the constraint violations. Then, in the course of minimizing the 

generalized criterion, the number of constraint violations will decrease, moving to 

zero (i.e., the constraints will be met). 
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Such problems are beyond the scope of this study, they are the subject of 

further authors’ research. 

The nature of the decrease in the value of the generalized criterion Cr shows 

the rapid convergence of the algorithm (Fig. 3.14 (d)) to the minimum of this 

criterion. 

The results of the optimal control of the system inverted pendulum by using 

the synthesized optimal neurocontroller are shown in Fig. 3.15. 

Fig. 3.15 shows that the boundary conditions of the system movement 

(3.20), as well as the constraints (3.21), are met. The initial position of the 

pendulum is equal to π, and the final positions of all the system elements are zero. 

The movement direction of the cart changed six times (Fig. 3.15, d). During the 

system movement, its drive force is limited (Fig. 3.15, e). 

  

а)      b) 

  

c)      d) 
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e)      f) 

Fig. 3.15 Plots of the dynamics of control of the underactuated system 

"inverted pendulum": the pendulum angular position (a), the pendulum angular 

velocity (b), the position of the cart (c), the speed of the cart (d), the driving force 

of the engine (e), decreasing of the optimization criterion (e) 

 

It should be noted that in the problem statement, in addition to the 

constraints (3.21), one may consider others. For example, the numbers of changes 

in the direction of movement of the cart, the number of changes in the values of the 

driving force, the number of outputs to the constraints, and so on. They will 

complicate the problem. The problem in such statements will be investigated in the 

following authors’ studies. 

The generalized criterion reduction during the algorithm application (Fig. 

3.15, f) is typical: first, a rapid decrease of the criterion with a gradual decrease in 

tempo. The last iterations do not lead to a significant improvement in the value of 

the criterion (3.24). It should be mentioned that increasing the number of iterations 

to 200 was justified. Indeed, 100 iterations for this problem would not be enough 

to achieve an acceptable magnitude of the optimization criterion. 

The neurocontroler corresponding to the conditions of the problem (3.22)-

(3.24) was also obtained for the Furuta pendulum. Fig. 3.16 shows the obtained 

results. 
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The plots presented in Fig. 3.16 show that during the control, the Furuta 

pendulum with the help of the neurocontroller was moved from the initial position 

to the final: the pendulum link at the end of the movement was in the position of 

vertical unstable equilibrium (Fig. 3.16, a).  

The boom changed direction seven times (Fig. 3.16, d) and at the end of the 

control stopped in the initial position (Fig. 3.16, c). The function of the driving 

torque reached the maximum and minimum (Fig. 3.16, d) and at the end of the 

movement is zero. This means that in the future the system will be at rest. 

The analysis of the convergence of the algorithm to the minimum criterion 

(Fig. 16, e) shows that the solution of the problem (the required values of the 

components of the vector of bias B and the tensor of weights W) was found in the 

last iterations.  

If such a solution is not found, it is necessary to start a new calculation cycle 

according to the method (Fig. 3.4) (sometimes it is advisable to increase the 

number of iterations). 

In general, it can be concluded that the proposed approach to the synthesis of 

optimal neurocontrollers for nonlinear MISO systems (for example, the 

underactuated plants) has shown its effectiveness. It can be recommended for 

solving other problems, or problems that were solved in this subsection, but in a 

different statement. This will be the subject of further authors’ research. 

  

а)      b) 
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c)      d) 

 

e)      f) 

Fig. 3.16 Plots of dynamics of the Furuta pendulum control: the pendulum links 

angular position (a), the pendulum link angular speed (b), the angular position (c), 

the boom angular speed (c), the engine torque (e), the reduction of the generalized 

criterion during optimization procedure (e) 

 

3.3.3 Linear MIMO plants 

 

A significant number of the plants belong to the class of multidimensional 

systems (MIMO systems). Such systems have multiple inputs and multiple outputs. 

In the simplest case, the MIMO system has two inputs and two outputs and is 

described by the matrix transfer function of size 2x2.  
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In order to illustrate the applicability of the method of training the artificial 

neural networks, we will show how it was used for the synthesis of the MIMO 

systems neurorcontrollers. The first system is a distillation column for the 

separation of water and methanol. The mathematical model of such a plant was 

proposed by Vinante and Luyben in [40]. It is described via a matrix transfer 

function of size 2x2: 

 

 

(3.20) 

 

The output (controlled) parameters of the plant are the temperatures on the 

fourth T4 and the seventeenth T17 plate, and the input (control): the intensity of 

irrigation (reflux) R and the intensity of the flow V at the bottom of the distillation 

column. The controlled parameters are measured in Celsius degrees, and input 

(control) in kg/h. It should be noted that the feature of the model (3.20) is the time 

delays, which complicate the problem of the optimal neurocontroller synthesis. 

However, it is assumed that the method will be able to overcome them, because the 

neural network is a universal approximator of the control function. 

In the case of the neural network with two inputs, two outputs, one hidden 

layer with five neurons in it, it is necessary to determine its 32 unknown 

parameters. Their values must satisfy the following conditions: 

 

(3.21) 

 

 

where 4T  and 17T  are temperature setpoints on the fourth and seventeenth plates, 

which are taken as equal to one; ts1 and ts2 are settling times of the first (T4) and 

second (T17) variables. Criterion (3.21) is complex: it meets the desire to minimize 

the weighted sum of the maximum regulation duration and the sum of the average 

modules of the errors (all components of the complex criterion are undesirable). 
































12,9

3,4

15,9

8,2

17

3,1

17

2,2

)G(
35,08,1

3,0

s

е

s

е

s

е

s

е

s
ss

ss







































 



,0

;0

min;20),max(5,1

1717

44

0

1717
1
2

0

44
1

121

21

TT

TT

dtTTtdtTTttt
ss t

s

t

sss



CHAPTER 3. ARTIFICIAL NEURAL NETWORKS AS OPTIMAL CONTROLLERS 

111 

The weights of 1.5 and 20, which are located near each of the components, 

correspond to their importance and reduce the individual components to a 

dimensionless form. 

In addition, we will require that the temperature overshoots on the fourth and 

seventeenth plates should be zero. This expresses the second line of the system 

(3.21). As a result of using the method of training the artificial neural network, the 

components of the tensor W of the network weights and the matrix B of biases 

were obtained, which allowed meeting the requirements (3.21). The process of the 

criterion minimization (3.21), which was performed as a result of the algorithm 

application, is illustrated in Fig. 3.17 (b) (for this problem the number of the 

iterations was chosen equal to 500, because with a smaller number the process did 

not have enough time to converge). 

  

а)      b) 

Fig. 3.17. Plots of the temperature control dynamics on the fourth and seventeenth 

plates of the distillation column Vinante and Luyben: the temperature on the fourth 

plate Т4 (black curve), the temperature on the seventeenth plate Т17 (gray curve) 

(a), the generalized criterion reduction during the optimization procedure (b) 

 

Fig. 3.17 (a) shows, that the controlled variables reach the setpoint quite 

quickly. The overshoots for both temperatures (on the fourth and seventeenth 

plates) are zero. The settling times are equal to ts1=15.9 s, ts2= 29.6 s. The values of 
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the average modules of errors are as follows: 41.0

0

44
1

1 
 dtTTt

st

s  and 

32.0
2

0

1717
1
2 
 dtTTt

st

s Thus, the problem of the neurorcontroller synthesis is 

solved. 

Another multidimensional system, which is quite common as a test in the 

development of closed control systems, is the model of the Wood-Berry distillation 

column [41], which is designed for methanol and water separation. It is represented 

as a matrix transfer function of size 2x2: 

 

 

(3.22) 

 

 

The controlled parameters of the plants with the matrix transfer function are 

the concentrations of products in the rectifier ХВ and in the vat residue ХD, 

respectively, and the input (controls): the irrigation intensity R supplied to the 

column and the flow of water vapor S supplied to the boiler. 

Matrix transfer function may be presented in the form of sysmem of 

differential equation as it is shown in Appendix. 

Model (3.22) differs from the model (3.20) in that it has greater time delays 

and in that the differential equations describing the evolution of both variables are 

of the second order (for model (3.20) the first equation that describes the change in 

temperature T4 is the first order, and the equation to describe the temperature T17 is 

the second order). Therefore, the input vector dimension of the system 

neurocontroller, which is described by the matrix transfer function (3.22) is four. 

Now we can determine the number of the unknown parameters that need to 

be calculated in the process of training the artificial neural network. We perform 

the following calculations by using formula (3.3) and obtain for a single-layer 
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network with five neurons in the hidden layer V=37. For this problem of the 

neurocontroller synthesis we use the optimization criterion similar to (3.21): 

 

(3.23) 

 

and a zero overshoot requirement for both variables: 

 

(3.24) 

 

where ВХ  and DХ  are the corresponding setpoints of controlled variables, which 

in both cases are equal to one; ts1 and ts2 are the settling times of the first (ХВ) and 

second (ХD) variables.  

The application of the developed method of training the artificial neural network 

made it possible to obtain the components of the tensor W of the weights of the 

network and its matrix B of bias, which minimizes the criterion (3.23) and meets 

the constraints (3.24). 

In order to illustrate the obtained results, we present graphical dependences 

(Fig. 3.18). The minimization of the criterion process (3.23) is illustrated by the 

plots in Fig. 3.18 (b). From Fig. 3.18, (a) it is seen that both controlled values reach 

the setpoint without overshoots.  

The settling times are equal to: ts1= 60.2 s, ts2= 54.0 s. The values of the 

average modules of the errors are as follows: 29.0
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DDs . Therefore, this problem of neurocontroller synthesis has 
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а)      b) 

Fig. 3.18 Plots of the control dynamics of the concentration of products in 

the rectifier ХВ and in the vat residue ХD: product concentration in the rectifier ХВ 

(black curve), product concentration in the rectifier ХD (gray curve) (a), reduction 

of the generalized criterion during the optimization procedure (b) 

 

Conclusions to chapter 3 

 

1. A method of training artificial neural networks for the synthesis of optimal 

automatic controllers has been developed. It allows taking into account the 

constraints imposed on the components of the phase vector of the plant and 

the vector of control. The method is based on the minimization of the 

generalized optimization criterion in the space of values of the components 

of the tensor weights of the neural network and the components of the 

matrix of its biases. The criterion was minimized by using the method ME-

D-PSO.  

2. In order to evaluate the efficiency of the developed method, the results of 

training neural networks (neurocontrollers) for several linear and nonlinear 

(underactuated) plants were performed. Analysis of the dynamics of their 

control and generalized criterion during the operation of the ME-D-PSO 
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algorithm confirmed the applicability of the method for the synthesis of 

optimal controlers.  

3. In particular, for the Wood-Berry distillation column, the settling time was 

60.2 and 54.0 s, and the average error was 0.29 and 0.26. For the Vinante-

Libuben distillation column, the settling time was 15.9 and 29.6 s, and the 

average error was 0.41 and 0.32. These values support the efficiency of 

trained neurocontrollers application for MIMO plants. 

 

References to chapter 3 

 

1. Cybenko, G. V. Approximation by Superpositions of a Sigmoidal function. 

Mathematics of Control Signals and Systems, 1989. Т. 2, № 4. pp. 303-314. 

2. Back-Propagation and Other Differentiation Algorithms / Goodfellow Ian, 

Bengio Yoshua, Courville Aaron. Deep Learning. MIT Press. 2016 pp. 200-

220. 

3. Deutsches Patent-und Markenamt: веб-сайт. URL: 

https://depatisnet.dpma.de/DepatisNet/depatisnet?window=1&space=menu

&content=index&action=einsteiger&switchToLang=en (date of access 

28.03.2021) 

4. Kennedy J., Eberhart R. Particle swarm optimization. Proceedings of the 

IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, 

December 1995. 

5. Yudong Zhang, Shuihua Wang, Genlin Ji. A Comprehensive Survey on 

Particle Swarm Optimization Algorithm and Its Applications. Mathematical 

Problems in Engineering. Vol. 2015, Article ID 931256, 38 pages. 

6. Zhang Y., Wu L. Crop classification by forward neural network with 

adaptive chaotic particle swarm optimization. Sensors. 2011. vol. 11, no. 5, 

pp. 4721–4743. 

https://depatisnet.dpma.de/DepatisNet/depatisnet?window=1&space=menu&content=index&action=einsteiger&switchToLang=en
https://depatisnet.dpma.de/DepatisNet/depatisnet?window=1&space=menu&content=index&action=einsteiger&switchToLang=en


CHAPTER 3. ARTIFICIAL NEURAL NETWORKS AS OPTIMAL CONTROLLERS 

116 

7. Munoz D.M., Llanos C.H, Coelho L.D.S., Ayala-Rincon M. Hardware 

opposition-based PSO applied to mobile robot controllers. Engineering 

Applications of Artificial Intelligence. 2014. Vol. 28. pp. 64–77. 

8. Xiao Y., Xiao J., Lu F., Wang S. Ensemble ANNs-PSO-GA approach for 

day-ahead stock E-exchange prices forecasting. International Journal of 

Computational Intelligence Systems. 2014.  vol. 7, no. 2, pp. 272–290. 

9. Zhong Y., Huang X., Meng P., Li F. PSO-RBF neural network PID control 

algorithm of electric gas pressure controller. Abstract and Applied Analysis. 

2014. vol. 2014, Article ID 731368, 7 pages 

10. Perng J.-W., Chen G.-Y., Hsieh S.-C. Optimal PID-controller design based 

on PSO-RBFNN for wind turbine systems. Energies. 2014. vol. 7, no. 1, pp. 

191-209 

11. Mandal P., Zareipour H., Rosehart W.D. Forecasting aggregated wind power 

production of multiple wind farms using hybrid wavelet-PSO-NNs. 

International Journal of Energy Research. 2014. vol. 38, no. 13, pp. 1654–

1666. 

12. Zhang Y., Wang S., Wu L. A novel method for magnetic resonance brain 

image classification based on adaptive chaotic PSO. Progress in 

Electromagnetics Research. 2010. vol. 109, pp. 325–343. 

13. Nasimi R., Irani R. Identification and modeling of a yeast fermentation 

bioreactor using hybrid particle swarm optimization-artificial neural 

networks. Energy Sources, Part A: Recovery, Utilization and Environmental 

Effects. 2014. vol. 36, no. 14, pp. 1604–1611. 

14. Saraswathi S., Sundaram S., Sundararajan N., Zimmermann M., Nilsen-

Hamilton M. ICGA-PSO-ELM approach for accurate multiclass cancer 

classification resulting in reduced gene sets in which genes encoding 

secreted proteins are highly represented. IEEE/ACMTransactions on 

Computational Biology and Bioinformatics. 2011. vol. 8, no. 2, pp. 452–

463. 



CHAPTER 3. ARTIFICIAL NEURAL NETWORKS AS OPTIMAL CONTROLLERS 

117 

15. He H.-D., Lu W.-Z., Xue Y. Prediction of particulate matter at street level 

using artificial neural networks coupling with chaotic particle swarm 

optimization algorithm. Building and Environment. 2014. vol. 78, pp. 111–

117. 

16. Yeh W.-C. New parameter-free simplified swarmoptimization for artificial 

neural network training and its application in the prediction of time series. 

IEEE Transactions on Neural Networks and Learning Systems. 2013. vol. 

24,no. 4, pp. 661–665. 

17. Asadnia M., Chua L.H.C., Qin X.S., Talei A. Improved particle 

swarmoptimization-based artificial neural network for Rainfall-Runoff 

modeling. Journal of Hydrologic Engineering. 2014. vol. 19, no. 7, pp. 

1320–1329. 

18. Das G., Pattnaik P.K., Padhy S.K.  Artificial Neural Network trained by 

Particle SwarmOptimization for non-linear channel equalization./ Expert 

Systems with Applications. 2014. vol. 41, no. 7, pp. 3491–3496. 

19. Conradie AVE, Miikkulainen R, Aldrich C. Adaptive control utilising neural 

swarming. In: Proceedings of the genetic and evolutionary computation 

conference, New York, USA. 2002 

20. Lin C-J, Hong S-J, Lee C-Y. The design of neuro-fuzzy networks using 

particle swarm optimization and recursive singular value decomposition. 

2006 International joint conference on neural networks, Sheraton Vancouver 

Wall Centre Hotel, Vancouver, BC, Canada, 16–21 July 2006 

21. Hafiz T.R., Waqas H.B., Jamil A., Saad A.B. Training of Artificial Neural 

Network Using PSO With Novel Initialization Technique. 2018 

International Conference on Innovation and Intelligence for Informatics, 

Computing, and Technologies (3ICT) 

22. Jeng-Fung C., Quang H.D., Ho-Nien H. Training Artificial Neural Networks 

by a Hybrid PSO-CS Algorithm. Algorithms. 2015. 8, pp. 292-308.  

23. Venayagamoorthy G.K., Gudise V.G. Comparison of Particle Swarm 

Optimization and Backpropagation as Training Algorithms for Neural 



CHAPTER 3. ARTIFICIAL NEURAL NETWORKS AS OPTIMAL CONTROLLERS 

118 

Networks. Proceedings of the 2003 IEEE Swarm Intelligence Symposium, 

2003. SIS '03, Institute of Electrical and Electronics Engineers (IEEE), Jan 

2003. 

24. Nasser M., Seyed J.M. Comparison of Particle Swarm Optimization and 

Backpropagation Algorithms for Training Feedforward Neural Network. 

Journal of mathematics and computer science. 2014. 12, pp. 113-123. 

25. Kaur J., Kalr, A., Sharma D. Comparative Survey of Swarm Intelligence 

Optimization Approaches for ANN Optimization. Intelligent 

Communication, Control and Devices. 2018. pp. 305–314. 

26. Garro B.A., Sossa H., V´azquez R.A. Back-propagation vs particle swarm 

optimization algorithm: which algorithm is better to adjust the synaptic 

weights of a feed-forward ANN? International Journal of Artificial 

Intelligence. 2011. vol. 7, no. 11, pp. 208-218. 

27. Garro B.A., Sossa H., Vazquez R.A. Design of artificial neural networks 

using a modified particle swarm optimization algorithm. Proceedings of 

IEEE International Joint Conference on Neural Networks (IJCNN’09), 

Atlanta, GA, USA, 2009, pp. 938-945. 

28. Conforth M., Meng Y. Toward evolving neural networks using bio-inspired 

algorithms. IC-AI, H. R. Arabnia and Y. Mun, Eds. 2008 pp. 413–419, 

CSREA Press. 

29. Da Y., Xiurun G. An improved PSO-based ANN with simulated annealing 

technique. Neurocomputing. 2005. vol. 63, pp. 527-533. 

30. Garro B.A., Sossa H., Vazquez R.A. Design of artificial neural networks 

using a modified particle swarm optimization algorithm. Proceedings of the 

International Joint Conference on Neural Networks (IJCNN ’09), pp. 938-

945, IEEE, Atlanta, Ga, USA, June 2009. 

31. Garro B., Sossa H., Vazquez R. Design of artificial neural networks using 

differential evolution algorithm. Neural Information Processing. Models and 

Applications, K. Wong, B. Mendis, and A. Bouzerdoum, Eds., vol. 6444 of 



CHAPTER 3. ARTIFICIAL NEURAL NETWORKS AS OPTIMAL CONTROLLERS 

119 

Lecture Notes in Computer Science, pp. 201–208, Springer, Berlin, 

Germany, 2010. 

32. Romasevych Y., Loveikin V., Makarets V. Optimal Constrained Tuning of 

PI-Controllers via a New PSO-Based Technique. International Journal of 

Swarm Intelligence Research (IJSIR), Volume 11, Issue 4, p 87-105. 

33. Romasevych Yu., Loveikin V. A Novel Multi-Epoch Particle Swarm 

Optimization Technique. Cybernetics and Information Technologies. 2018. 

Vol. 18 (3). pp. 62–74. 

34. Åströn K. J., Hägglund T. Benchmark Systems for PID Control. 

International Federation of Automatic Control. 2000. P. 165–166. 

35. Lysenko V., Bolbot I., Romasevych Y., Loveykin V., Voytiuk V. 

Algorithms of robotic electrotechnical complex control in agricultural 

production. Control Systems: Theory and Applications. River Publishers, 

2018, ch. 11, pp. 271-289 

36. Loveikin V.S., Romasevich Yu.A., Khoroshun S.A., Shevchuck A.G. Time-

optimal control of a simple pendulum with a movable pivot. Part 1. 

International Applied Mechanics. 2018. 54, N 3. pp. 358 – 365. 

37. Spong M.W., Corke P., Lozano R. Nonlinear control of the inertia wheel 

pendulum. Automatica, 37, 2001, pp. 1845-1851. 

38. Russ Tedrake. Underactuated Robotics: Algorithms for Walking, Running, 

Swimming, Flying, and Manipulation (Course Notes for MIT 6.832). 

Downloaded on 06.04.2020 from http://underactuated.mit.edu/ 

39. Furuta K., Yamakita M., Kobayashi S. Swing-up control of inverted 

pendulum using pseudo-state feedback. Journal of Systems and Control 

Engineering. 1992. 206(6), pp. 263-269. 

40. Vinante, Luyben Experimental studies of distillation decoupling. Control 

Eng. Practice.1972. Vol. 1, Nº 6 pp. 999-1008. 

41. Wood R.K., Berry M.W. Terminal composition control of a binary 

distillation column. Chem. Eng. Sci. 1973. 28, pp. 707-1717. 



CHAPTER 3. ARTIFICIAL NEURAL NETWORKS AS OPTIMAL CONTROLLERS 

120 

42. Qing-Guo W., Zhen Y., Wen-Jian C., Chang-Chieh H. PID Control for 

Multivariable Processes. Lecture Notes in Control and Information Sciences 

373. Editors: M. Thoma, M. Morari. Springer-Verlag Berlin Heidelberg. 

2008. p. 273. 



INNOVATION MANAGEMENT IN AGRICULTURE. AGROTRONICS AND DESIGN  
OF OPTIMAL CONTROLLERS BASED ON NEW MODIFICATIONS  

OF PARTICLE SWARM OPTIMIZATION 

121 

 

APPENDIX. CONVERTING A MATRIX TRANSFER FUNCTION INTO  

SYSTEM OF DIFFERENTIAL EQUATIONS  

(ILLUSTRATED BY WOOD-BERRY COLUMN) 

 

In many problems of synthesis of control systems transfer functions and 

systems of differential equations are used. Both presented a mathematical model of a 

plant. In the development of the control systems transfer functions are more common. 

However, in many cases systems of differential equations are more euphemistic. 

Thus, it causes the problem of converting one kind of mathematical model of a plant 

into another one. 

In the current work, an example of converting is presented. We have chosen 

the plant ‒ Wood-Berry column. It has two inputs and two outputs and it is described 

by the matrix transfer function: 

 

 

(1) 

 

 

where s ‒ Laplace image. Taking into consideration the transfer function (1) we may 

write down the equation of Laplace transform of variables ХD and ХВ: 

 

 

(2) 

 

 

where S and R ‒ steam flow and reflux respectively; ХD and ХВ ‒ concentrations of 

the separated components: water and methanol respectively. 

The matrix form (3) we may present in the following form: 
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(3) 

 

 

Taking some transformations of the system (3) we may obtain the following form: 

 

(4) 

 

Simplification of the system of equation (4) leads to the next system of equations: 

 

(5) 

 

Carrying out the inverse Laplace transformation leads to the final result – the system 

of differential equations, which corresponds to the matrix transfer function (1): 

 

 

(6) 

 

 

The found mathematical model is the same as presented in the work [1]. It will be 

exploited in the area of the development of optimal control systems. 

 

Reference: 

1. Qing-Guo W., Zhen Y., Wen-Jian C., Chang-Chieh H. PID Control for 
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2008. – p. 273. 
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